Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jan 2;120(2):359–369. doi: 10.1083/jcb.120.2.359

Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28

PMCID: PMC2119509  PMID: 8421053

Abstract

The localization and transporting properties of a kidney protein homologous to human erythrocyte protein CHIP28 was evaluated. The cDNA encoding rat kidney protein CHIP28k was isolated from a rat renal cortex cDNA library. A 2.8-kb cDNA was identified which contained an 807 bp open reading frame encoding a 28.8 kD protein with 94% amino acid identity to CHIP28. in vitro translation of CHIP28k cDNA in rabbit reticulocyte lysate generated a 28-kD protein; addition of ER-derived microsomes gave a 32-kD transmembrane glycoprotein. Translation of truncated RNA demonstrated glycosylation of residue Asn42 which is predicted to lie between the first and second transmembrane domains. Expression of in vitro transcribed mRNA encoding CHIP28k in Xenopus oocytes increased oocyte osmotic water permeability (Pf) from (4 +/- 1) x 10(-4) to (33 +/- 4) x 10(-4) cm/s at 10 degrees C; the increase in oocyte Pf was weakly temperature dependent and inhibited by HgCl2. Two- electrode voltage clamp measurements indicated that CHIP28k was not permeable to ions. Oocyte Pf also increased with expression of total mRNA from kidney cortex and papilla; the increase in Pf with mRNA from cortex, but not kidney papilla, was blocked by coinjection with excess antisense CHIP28k cRNA. In situ hybridization of a 150 base cRNA antisense probe to tissue sections from rat kidney showed selective CHIP28k localization to epithelial cells in proximal tubule and thin descending limb of Henle. Pf in purified apical membrane vesicles from rat and human proximal tubule, and in proteoliposomes reconstituted with purified protein, was very high and inhibited by HgCl2; stripping of apical vesicles with N-lauroylsarcosine enriched a 28-kD protein by 25-fold and yielded a vesicle population with high water, but low urea and proton permeabilities. CHIP28k identity was confirmed by NH2- terminus sequence analysis. These results indicate that CHIP28k is a major and highly selective water transporting protein in the kidney proximal tubule and thin descending limb of Henle, but not collecting duct.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biber J., Stieger B., Haase W., Murer H. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta. 1981 Oct 2;647(2):169–176. doi: 10.1016/0005-2736(81)90243-1. [DOI] [PubMed] [Google Scholar]
  2. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  3. Denker B. M., Smith B. L., Kuhajda F. P., Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988 Oct 25;263(30):15634–15642. [PubMed] [Google Scholar]
  4. Fischbarg J., Kuang K. Y., Vera J. C., Arant S., Silverstein S. C., Loike J., Rosen O. M. Glucose transporters serve as water channels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3244–3247. doi: 10.1073/pnas.87.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Handler J. S. Antidiuretic hormone moves membranes. Am J Physiol. 1988 Sep;255(3 Pt 2):F375–F382. doi: 10.1152/ajprenal.1988.255.3.F375. [DOI] [PubMed] [Google Scholar]
  6. Harris H. W., Jr, Strange K., Zeidel M. L. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J Clin Invest. 1991 Jul;88(1):1–8. doi: 10.1172/JCI115263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris H. W., Jr, Wade J. B., Handler J. S. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone-elicited water permeability increase in the toad urinary bladder. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1942–1946. doi: 10.1073/pnas.85.6.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hasegawa H., Skach W., Baker O., Calayag M. C., Lingappa V., Verkman A. S. A multifunctional aqueous channel formed by CFTR. Science. 1992 Nov 27;258(5087):1477–1479. doi: 10.1126/science.1279809. [DOI] [PubMed] [Google Scholar]
  9. Kuwahara M., Shi L. B., Marumo F., Verkman A. S. Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule. J Clin Invest. 1991 Aug;88(2):423–429. doi: 10.1172/JCI115321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macey R. I. Transport of water and urea in red blood cells. Am J Physiol. 1984 Mar;246(3 Pt 1):C195–C203. doi: 10.1152/ajpcell.1984.246.3.C195. [DOI] [PubMed] [Google Scholar]
  11. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer M. M., Verkman A. S. Evidence for water channels in renal proximal tubule cell membranes. J Membr Biol. 1987;96(2):107–119. doi: 10.1007/BF01869237. [DOI] [PubMed] [Google Scholar]
  13. Pearce D., Verkman A. S. NaCl reflection coefficients in proximal tubule apical and basolateral membrane vesicles. Measurement by induced osmosis and solvent drag. Biophys J. 1989 Jun;55(6):1251–1259. doi: 10.1016/S0006-3495(89)82920-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perara E., Rothman R. E., Lingappa V. R. Uncoupling translocation from translation: implications for transport of proteins across membranes. Science. 1986 Apr 18;232(4748):348–352. doi: 10.1126/science.3961485. [DOI] [PubMed] [Google Scholar]
  15. Preston G. M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11110–11114. doi: 10.1073/pnas.88.24.11110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992 Apr 17;256(5055):385–387. doi: 10.1126/science.256.5055.385. [DOI] [PubMed] [Google Scholar]
  17. Sabolić I., Shi L. B., Brown D., Ausiello D. A., Verkman A. S. Proteinases inhibit H(+)-ATPase and Na+/H+ exchange but not water transport in apical and endosomal membranes from rat proximal tubule. Biochim Biophys Acta. 1992 Jan 10;1103(1):137–147. doi: 10.1016/0005-2736(92)90067-v. [DOI] [PubMed] [Google Scholar]
  18. Sabolić I., Valenti G., Verbavatz J. M., Van Hoek A. N., Verkman A. S., Ausiello D. A., Brown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol. 1992 Dec;263(6 Pt 1):C1225–C1233. doi: 10.1152/ajpcell.1992.263.6.C1225. [DOI] [PubMed] [Google Scholar]
  19. Shi L. B., Fushimi K., Verkman A. S. Solvent drag measurement of transcellular and basolateral membrane NaCl reflection coefficient in kidney proximal tubule. J Gen Physiol. 1991 Aug;98(2):379–398. doi: 10.1085/jgp.98.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shi L. B., Wang Y. X., Verkman A. S. Regulation of the formation and water permeability of endosomes from toad bladder granular cells. J Gen Physiol. 1990 Oct;96(4):789–808. doi: 10.1085/jgp.96.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith B. L., Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem. 1991 Apr 5;266(10):6407–6415. [PubMed] [Google Scholar]
  22. Tsai S. T., Zhang R. B., Verkman A. S. High channel-mediated water permeability in rabbit erythrocytes: characterization in native cells and expression in Xenopus oocytes. Biochemistry. 1991 Feb 26;30(8):2087–2092. doi: 10.1021/bi00222a013. [DOI] [PubMed] [Google Scholar]
  23. Van Hoek A. N., Luthjens L. H., Hom M. L., Van Os C. H., Dempster J. A. A 30 kDa functional size for the erythrocyte water channel determined in situ by radiation inactivation. Biochem Biophys Res Commun. 1992 May 15;184(3):1331–1338. doi: 10.1016/s0006-291x(05)80028-2. [DOI] [PubMed] [Google Scholar]
  24. Verbavatz J. M., Calamita G., Hugon J. S., Bourguet J. Isolation of large sheets of apical material from frog urinary bladder epithelial cells by freeze-fracture. Biol Cell. 1989;66(1-2):91–97. [PubMed] [Google Scholar]
  25. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  26. Verkman A. S. Passive H+/OH- permeability in epithelial brush border membranes. J Bioenerg Biomembr. 1987 Oct;19(5):481–493. doi: 10.1007/BF00770031. [DOI] [PubMed] [Google Scholar]
  27. Verkman A. S., Skorecki K., Ausiello D. A. Radiation inactivation of oligomeric enzyme systems: theoretical considerations. Proc Natl Acad Sci U S A. 1984 Jan;81(1):150–154. doi: 10.1073/pnas.81.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Verkman A. S. Water channels in cell membranes. Annu Rev Physiol. 1992;54:97–108. doi: 10.1146/annurev.ph.54.030192.000525. [DOI] [PubMed] [Google Scholar]
  29. Verkman A. S., Weyer P., Brown D., Ausiello D. A. Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J Biol Chem. 1989 Dec 5;264(34):20608–20613. [PubMed] [Google Scholar]
  30. Verkman A. S., Wong K. R. Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules. Biophys J. 1987 May;51(5):717–723. doi: 10.1016/S0006-3495(87)83398-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  32. Ye R. G., Shi L. B., Lencer W. I., Verkman A. S. Functional colocalization of water channels and proton pumps in endosomes from kidney proximal tubule. J Gen Physiol. 1989 May;93(5):885–902. doi: 10.1085/jgp.93.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang R. B., Logee K. A., Verkman A. S. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem. 1990 Sep 15;265(26):15375–15378. [PubMed] [Google Scholar]
  34. Zhang R., Alper S. L., Thorens B., Verkman A. S. Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter. J Clin Invest. 1991 Nov;88(5):1553–1558. doi: 10.1172/JCI115466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Heeswijk M. P., van Os C. H. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol. 1986;92(2):183–193. doi: 10.1007/BF01870707. [DOI] [PubMed] [Google Scholar]
  36. van Hoek A. N., Hom M. L., Luthjens L. H., de Jong M. D., Dempster J. A., van Os C. H. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem. 1991 Sep 5;266(25):16633–16635. [PubMed] [Google Scholar]
  37. van Hoek A. N., Verkman A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem. 1992 Sep 15;267(26):18267–18269. [PubMed] [Google Scholar]
  38. van Hoek A. N., de Jong M. D., van Os C. H. Effects of dimethylsulfoxide and mercurial sulfhydryl reagents on water and solute permeability of rat kidney brush border membranes. Biochim Biophys Acta. 1990 Dec 14;1030(2):203–210. doi: 10.1016/0005-2736(90)90296-z. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES