Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Feb 1;120(3):825–834. doi: 10.1083/jcb.120.3.825

Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix

PMCID: PMC2119530  PMID: 7678838

Abstract

Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assembly of newly synthesized chondrocyte pericellular matrices was inhibited by the addition to hyaluronan hexasaccharides, competitive inhibitors of the binding of hyaluronan to its cell surface receptor. Fully assembled chondrocyte pericellular matrices were displaced using hyaluronan hexasaccharides as well. When exogenous hyaluronan was added to matrix-free chondrocytes in combination with aggrecan, a pericellular matrix equivalent in size to an endogenous matrix formed within 30 min of incubation. Addition of hyaluronan and aggrecan to glutaraldehyde-fixed chondrocytes resulted in matrix assembly comparable to live chondrocytes. These matrices could be inhibited from assembling by the addition of excess hyaluronan hexasaccharides or displaced once assembled by subsequent incubation with hyaluronan hexasaccharides. The results indicate that the aggrecanrich chondrocyte pericellular matrix is not only on a scaffolding of hyaluronan, but actually anchored to the cell surface via the interaction between hyaluronan and hyaluronan receptors.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  2. Banerjee S. D., Toole B. P. Monoclonal antibody to chick embryo hyaluronan-binding protein: changes in distribution of binding protein during early brain development. Dev Biol. 1991 Jul;146(1):186–197. doi: 10.1016/0012-1606(91)90459-g. [DOI] [PubMed] [Google Scholar]
  3. Bansal M. K., Ward H., Mason R. M. Proteoglycan synthesis in suspension cultures of Swarm rat chondrosarcoma chondrocytes and inhibition by exogenous hyaluronate. Arch Biochem Biophys. 1986 May 1;246(2):602–610. doi: 10.1016/0003-9861(86)90315-2. [DOI] [PubMed] [Google Scholar]
  4. Byers S., Hopkins T. J., Kuettner K. E., Kimura J. H. The effect of zwitterionic detergents on the extraction and functional properties of cartilage proteoglycans. J Biol Chem. 1987 Jul 5;262(19):9166–9174. [PubMed] [Google Scholar]
  5. Caputo C. B., MacCallum D. K., Kimura J. H., Schrode J., Hascall V. C. Characterization of fragments produced by clostripain digestion of proteoglycans from the Swarm rat chondrosarcoma. Arch Biochem Biophys. 1980 Oct 1;204(1):220–233. doi: 10.1016/0003-9861(80)90027-2. [DOI] [PubMed] [Google Scholar]
  6. Christner J. E., Brown M. L., Dziewiatkowski D. D. Interaction of cartilage proteoglycans with hyaluronic acid. The role of the hyaluronic acid carboxyl groups. Biochem J. 1977 Dec 1;167(3):711–716. doi: 10.1042/bj1670711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarris B. J., Fraser J. R. On the pericellular zone of some mammalian cells in vitro. Exp Cell Res. 1968 Jan;49(1):181–193. doi: 10.1016/0014-4827(68)90530-2. [DOI] [PubMed] [Google Scholar]
  8. Culty M., Miyake K., Kincade P. W., Sikorski E., Butcher E. C., Underhill C., Silorski E. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol. 1990 Dec;111(6 Pt 1):2765–2774. doi: 10.1083/jcb.111.6.2765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  10. Faltz L. L., Reddi A. H., Hascall G. K., Martin D., Pita J. C., Hascall V. C. Characteristics of proteoglycans extracted from the Swarm rat chondrosarcoma with associative solvents. J Biol Chem. 1979 Feb 25;254(4):1375–1380. [PubMed] [Google Scholar]
  11. Forrester J. V., Wilkinson P. C. Inhibition of leukocyte locomotion by hyaluronic acid. J Cell Sci. 1981 Apr;48:315–331. doi: 10.1242/jcs.48.1.315. [DOI] [PubMed] [Google Scholar]
  12. Goldberg R. L., Toole B. P. Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate. J Cell Biol. 1984 Dec;99(6):2114–2122. doi: 10.1083/jcb.99.6.2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Handley C. J., Lowther D. A. Inhibition of proteoglycan biosynthesis by hyaluronic acid in chondrocytes in cell culture. Biochim Biophys Acta. 1976 Aug 24;444(1):69–74. doi: 10.1016/0304-4165(76)90224-5. [DOI] [PubMed] [Google Scholar]
  14. Hardingham T. E., Ewins R. J., Muir H. Cartilage proteoglycans. Structure and heterogeneity of the protein core and the effects of specific protein modifications on the binding to hyaluronate. Biochem J. 1976 Jul 1;157(1):127–143. doi: 10.1042/bj1570127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim J. J., Conrad H. E. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1977 Nov 25;252(22):8292–8299. [PubMed] [Google Scholar]
  16. Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
  17. Knudson C. B., Toole B. P. Changes in the pericellular matrix during differentiation of limb bud mesoderm. Dev Biol. 1985 Dec;112(2):308–318. doi: 10.1016/0012-1606(85)90401-4. [DOI] [PubMed] [Google Scholar]
  18. Knudson C. B., Toole B. P. Hyaluronate-cell interactions during differentiation of chick embryo limb mesoderm. Dev Biol. 1987 Nov;124(1):82–90. doi: 10.1016/0012-1606(87)90462-3. [DOI] [PubMed] [Google Scholar]
  19. Knudson W., Gundlach M. W., Schmid T. M., Conrad H. E. Selective hydrolysis of chondroitin sulfates by hyaluronidase. Biochemistry. 1984 Jan 17;23(2):368–375. doi: 10.1021/bi00297a028. [DOI] [PubMed] [Google Scholar]
  20. Knudson W., Knudson C. B. Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix. J Cell Sci. 1991 Jun;99(Pt 2):227–235. doi: 10.1242/jcs.99.2.227. [DOI] [PubMed] [Google Scholar]
  21. Laurent T. C., Fraser J. R. Hyaluronan. FASEB J. 1992 Apr;6(7):2397–2404. [PubMed] [Google Scholar]
  22. Mason R. M., Crossman M. V., Sweeney C. Hyaluronan and hyaluronan-binding proteins in cartilaginous tissues. Ciba Found Symp. 1989;143:107-16; discussion 117-20, 281-5. doi: 10.1002/9780470513774.ch7. [DOI] [PubMed] [Google Scholar]
  23. McCarthy M. T., Toole B. P. Membrane-associated hyaluronate-binding activity of chondrosarcoma chondrocytes. J Cell Physiol. 1989 Oct;141(1):191–202. doi: 10.1002/jcp.1041410127. [DOI] [PubMed] [Google Scholar]
  24. Mollenhauer J., Bee J. A., Lizarbe M. A., von der Mark K. Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol. 1984 Apr;98(4):1572–1579. doi: 10.1083/jcb.98.4.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morales T. I., Hascall V. C. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J Biol Chem. 1988 Mar 15;263(8):3632–3638. [PubMed] [Google Scholar]
  26. Nemec R. E., Toole B. P., Knudson W. The cell surface hyaluronate binding sites of invasive human bladder carcinoma cells. Biochem Biophys Res Commun. 1987 Nov 30;149(1):249–257. doi: 10.1016/0006-291x(87)91632-9. [DOI] [PubMed] [Google Scholar]
  27. Ng K. F., Schwartz N. B. Solubilization and partial purification of hyaluronate synthetase from oligodendroglioma cells. J Biol Chem. 1989 Jul 15;264(20):11776–11783. [PubMed] [Google Scholar]
  28. Ohya T., Kaneko Y. Novel hyaluronidase from streptomyces. Biochim Biophys Acta. 1970 Mar 18;198(3):607–609. doi: 10.1016/0005-2744(70)90139-7. [DOI] [PubMed] [Google Scholar]
  29. Sandy J. D., O'Neill J. R., Ratzlaff L. C. Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans. Biochem J. 1989 Mar 15;258(3):875–880. doi: 10.1042/bj2580875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sandy J. D., Plaas A. H. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures. Arch Biochem Biophys. 1989 Jun;271(2):300–314. doi: 10.1016/0003-9861(89)90280-4. [DOI] [PubMed] [Google Scholar]
  31. Solursh M., Hardingham T. E., Hascall V. C., Kimura J. H. Separate effects of exogenous hyaluronic acid on proteoglycan synthesis and deposition in pericellular matrix by cultured chick embryo limb chondrocytes. Dev Biol. 1980 Mar;75(1):121–129. doi: 10.1016/0012-1606(80)90148-7. [DOI] [PubMed] [Google Scholar]
  32. Solursh M., Vaerewyck S. A., Reiter R. S. Depression by hyaluronic acid of glycosaminoglycan synthesis by cultured chick embryo chondrocytes. Dev Biol. 1974 Dec;41(2):233–244. doi: 10.1016/0012-1606(74)90302-9. [DOI] [PubMed] [Google Scholar]
  33. Sommarin Y., Heinegård D. Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface. Biochem J. 1983 Sep 15;214(3):777–784. doi: 10.1042/bj2140777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun D., Aydelotte M. B., Maldonado B., Kuettner K. E., Kimura J. H. Clonal analysis of the population of chondrocytes from the Swarm rat chondrosarcoma in agarose culture. J Orthop Res. 1986;4(4):427–436. doi: 10.1002/jor.1100040405. [DOI] [PubMed] [Google Scholar]
  35. Underhill C. B., Chi-Rosso G., Toole B. P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J Biol Chem. 1983 Jul 10;258(13):8086–8091. [PubMed] [Google Scholar]
  36. Underhill C. B., Toole B. P. Binding of hyaluronate to the surface of cultured cells. J Cell Biol. 1979 Aug;82(2):475–484. doi: 10.1083/jcb.82.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wiebkin O. W., Muir H. The inhibition of sulphate incorporation in isolated adult chondrocytes by hyaluronic acid. FEBS Lett. 1973 Nov 15;37(1):42–46. doi: 10.1016/0014-5793(73)80422-3. [DOI] [PubMed] [Google Scholar]
  38. Yu Q., Banerjee S. D., Toole B. P. The role of hyaluronan-binding protein in assembly of pericellular matrices. Dev Dyn. 1992 Feb;193(2):145–151. doi: 10.1002/aja.1001930206. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES