Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 May 1;121(3):689–704. doi: 10.1083/jcb.121.3.689

Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor

PMCID: PMC2119558  PMID: 7683691

Abstract

12(S)-HETE, a lipoxygenase metabolite of arachidonic acid induced a nondestructive and reversible endothelial cell (EC) retraction. 12(S)- HETE induced EC retraction was inhibited by protein kinase C inhibitors calphostin C and staurosporine but not by the protein kinase A inhibitor H8. The role of EC integrins alpha v beta 3 and alpha 5 beta 1 in 12(S)-HETE induced EC retraction was investigated. In confluent EC cultures, alpha v beta 3 is localized to focal adhesions at both the cell body and cell-cell borders and is colocalized with vinculin- containing focal adhesions. In contrast, alpha 5 beta 1 is primarily enriched at the cell-cell borders, demonstrating codistribution with cell cortical microfilaments and extracellular fibronectin. Both receptors were functional in mediating cell-cell or cell-matrix interactions based on the observations that specific antibodies inhibited EC adhesion to intact subendothelial matrix and disrupted the monolayer integrity. 12(S)-HETE induced a multistep, temporally defined redistribution of the alpha v beta 3-containing focal adhesions, leading to an eventual decrease in alpha v beta 3 plaques in the retracted ECs. This effect of 12(S)-HETE was inhibited by calphostin C but not by H8. The alterations of alpha v beta 3-containing focal adhesions preceded the development of EC retraction. 12(S)-HETE also enhanced EC alpha v beta 3 surface expression as revealed by immunofluorescence, flow cytometry, and digitized image analysis. 12(S)- HETE-induced alpha v beta 3 rearrangement (i.e., decreased focal adhesion localization and enhanced surface expression) did not result from altered mRNA transcription (as revealed by semi-quantitative RT- PCR analysis) or protein translation (as revealed by Western blotting). In contrast to its effect on alpha v beta 3, 12(S)-HETE did not demonstrate a temporally related, well-defined effect on the distribution pattern and the surface expression of alpha 5 beta 1, although the cell-cell border staining pattern of alpha 5 beta 1 was disrupted due to EC retraction. It is concluded that 12(S)-HETE-induced decrease of alpha v beta 3 localization to focal adhesions may contribute to the development of EC retraction and that 12(S)-HETE induced increase in alpha v beta 3 surface expression may promote adhesion of inflammatory leukocytes as well as tumor cells to endothelium.

Full Text

The Full Text of this article is available as a PDF (8.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrez M. V., Bates R. C., Boyd A. W., Burns G. F. Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Cell Regul. 1991 Dec;2(12):1035–1044. doi: 10.1091/mbc.2.12.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albelda S. M., Daise M., Levine E. M., Buck C. A. Identification and characterization of cell-substratum adhesion receptors on cultured human endothelial cells. J Clin Invest. 1989 Jun;83(6):1992–2002. doi: 10.1172/JCI114109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bavisotto L. M., Schwartz S. M., Heimark R. L. Modulation of Ca2(+)-dependent intercellular adhesion in bovine aortic and human umbilical vein endothelial cells by heparin-binding growth factors. J Cell Physiol. 1990 Apr;143(1):39–51. doi: 10.1002/jcp.1041430106. [DOI] [PubMed] [Google Scholar]
  4. Beckerle M. C., Burridge K., DeMartino G. N., Croall D. E. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell. 1987 Nov 20;51(4):569–577. doi: 10.1016/0092-8674(87)90126-7. [DOI] [PubMed] [Google Scholar]
  5. Belloni P. N., Tressler R. J. Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev. 1990 Feb;8(4):353–389. doi: 10.1007/BF00052608. [DOI] [PubMed] [Google Scholar]
  6. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  7. Chang Y. S., Chen Y. Q., Timar J., Nelson K. K., Grossi I. M., Fitzgerald L. A., Diglio C. A., Honn K. V. Increased expression of alpha IIb beta 3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability. Int J Cancer. 1992 May 28;51(3):445–451. doi: 10.1002/ijc.2910510318. [DOI] [PubMed] [Google Scholar]
  8. Charo I. F., Bekeart L. S., Phillips D. R. Platelet glycoprotein IIb-IIIa-like proteins mediate endothelial cell attachment to adhesive proteins and the extracellular matrix. J Biol Chem. 1987 Jul 25;262(21):9935–9938. [PubMed] [Google Scholar]
  9. Charo I. F., Nannizzi L., Smith J. W., Cheresh D. A. The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol. 1990 Dec;111(6 Pt 1):2795–2800. doi: 10.1083/jcb.111.6.2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen Y. Q., Gao X., Timar J., Tang D., Grossi I. M., Chelladurai M., Kunicki T. J., Fligiel S. E., Taylor J. D., Honn K. V. Identification of the alpha IIb beta 3 integrin in murine tumor cells. J Biol Chem. 1992 Aug 25;267(24):17314–17320. [PubMed] [Google Scholar]
  11. Cheng Y. F., Clyman R. I., Enenstein J., Waleh N., Pytela R., Kramer R. H. The integrin complex alpha v beta 3 participates in the adhesion of microvascular endothelial cells to fibronectin. Exp Cell Res. 1991 May;194(1):69–77. doi: 10.1016/0014-4827(91)90131-d. [DOI] [PubMed] [Google Scholar]
  12. Cheng Y. F., Kramer R. H. Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. J Cell Physiol. 1989 May;139(2):275–286. doi: 10.1002/jcp.1041390209. [DOI] [PubMed] [Google Scholar]
  13. Cheresh D. A. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6471–6475. doi: 10.1073/pnas.84.18.6471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chopra H., Fligiel S. E., Hatfield J. S., Nelson K. K., Diglio C. A., Taylor J. D., Honn K. V. An in vivo study of the role of the tumor cell cytoskeleton in tumor cell-platelet-endothelial cell interactions. Cancer Res. 1990 Dec 1;50(23):7686–7696. [PubMed] [Google Scholar]
  15. Dejana E., Colella S., Conforti G., Abbadini M., Gaboli M., Marchisio P. C. Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells. J Cell Biol. 1988 Sep;107(3):1215–1223. doi: 10.1083/jcb.107.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dejana E., Lampugnani M. G., Giorgi M., Gaboli M., Marchisio P. C. Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood. 1990 Apr 1;75(7):1509–1517. [PubMed] [Google Scholar]
  17. Fitzgerald L. A., Charo I. F., Phillips D. R. Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa. J Biol Chem. 1985 Sep 15;260(20):10893–10896. [PubMed] [Google Scholar]
  18. Ford W. L., Sedgley M., Sparshott S. M., Smith M. E. The migration of lymphocytes across specialized vascular endothelium. II. The contrasting consequences of treating lymphocytes with tryspin or neuraminidase. Cell Tissue Kinet. 1976 Jul;9(4):351–361. [PubMed] [Google Scholar]
  19. Giltay J. C., van Mourik J. A. Structure and function of endothelial cell integrins. Haemostasis. 1988;18(4-6):376–389. doi: 10.1159/000215819. [DOI] [PubMed] [Google Scholar]
  20. Grossi I. M., Fitzgerald L. A., Umbarger L. A., Nelson K. K., Diglio C. A., Taylor J. D., Honn K. V. Bidirectional control of membrane expression and/or activation of the tumor cell IRGpIIb/IIIa receptor and tumor cell adhesion by lipoxygenase products of arachidonic acid and linoleic acid. Cancer Res. 1989 Feb 15;49(4):1029–1037. [PubMed] [Google Scholar]
  21. Haimovich B., Aneskievich B. J., Boettiger D. Cellular partitioning of beta-1 integrins and their phosphorylated forms is altered after transformation by Rous sarcoma virus or treatment with cytochalasin D. Cell Regul. 1991 Apr;2(4):271–283. doi: 10.1091/mbc.2.4.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hedberg K. K., Birrell G. B., Habliston D. L., Griffith O. H. Staurosporine induces dissolution of microfilament bundles by a protein kinase C-independent pathway. Exp Cell Res. 1990 Jun;188(2):199–208. doi: 10.1016/0014-4827(90)90160-c. [DOI] [PubMed] [Google Scholar]
  23. Hidaka H., Watanabe M., Kobayashi R. Properties and use of H-series compounds as protein kinase inhibitors. Methods Enzymol. 1991;201:328–339. doi: 10.1016/0076-6879(91)01029-2. [DOI] [PubMed] [Google Scholar]
  24. Hillery C. A., Smyth S. S., Parise L. V. Phosphorylation of human platelet glycoprotein IIIa (GPIIIa). Dissociation from fibrinogen receptor activation and phosphorylation of GPIIIa in vitro. J Biol Chem. 1991 Aug 5;266(22):14663–14669. [PubMed] [Google Scholar]
  25. Honn K. V., Grossi I. M., Diglio C. A., Wojtukiewicz M., Taylor J. D. Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. FASEB J. 1989 Sep;3(11):2285–2293. doi: 10.1096/fasebj.3.11.2673900. [DOI] [PubMed] [Google Scholar]
  26. Honn K. V., Tang D. G. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev. 1992 Nov;11(3-4):353–375. doi: 10.1007/BF01307187. [DOI] [PubMed] [Google Scholar]
  27. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  28. Hynes R. O., Lander A. D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell. 1992 Jan 24;68(2):303–322. doi: 10.1016/0092-8674(92)90472-o. [DOI] [PubMed] [Google Scholar]
  29. Ignotz R. A., Heino J., Massagué J. Regulation of cell adhesion receptors by transforming growth factor-beta. Regulation of vitronectin receptor and LFA-1. J Biol Chem. 1989 Jan 5;264(1):389–392. [PubMed] [Google Scholar]
  30. Jaken S., Leach K., Klauck T. Association of type 3 protein kinase C with focal contacts in rat embryo fibroblasts. J Cell Biol. 1989 Aug;109(2):697–704. doi: 10.1083/jcb.109.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kramer R. H., Cheng Y. F., Clyman R. Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin. J Cell Biol. 1990 Sep;111(3):1233–1243. doi: 10.1083/jcb.111.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lampugnani M. G., Resnati M., Dejana E., Marchisio P. C. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol. 1991 Feb;112(3):479–490. doi: 10.1083/jcb.112.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lawler J., Weinstein R., Hynes R. O. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol. 1988 Dec;107(6 Pt 1):2351–2361. doi: 10.1083/jcb.107.6.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liu B., Timar J., Howlett J., Diglio C. A., Honn K. V. Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regul. 1991 Dec;2(12):1045–1055. doi: 10.1091/mbc.2.12.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Menter D. G., Steinert B. W., Sloane B. F., Gundlach N., O'Gara C. Y., Marnett L. J., Diglio C., Walz D., Taylor J. D., Honn K. V. Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Res. 1987 Dec 15;47(24 Pt 1):6751–6762. [PubMed] [Google Scholar]
  36. Pauli B. U., Lee C. L. Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Lab Invest. 1988 Apr;58(4):379–387. [PubMed] [Google Scholar]
  37. Ruoslahti E. Integrins. J Clin Invest. 1991 Jan;87(1):1–5. doi: 10.1172/JCI114957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shaughnessy S. G., Lafrenie R. M., Buchanan M. R., Podor T. J., Orr F. W. Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated tumor cell adhesion. Am J Pathol. 1991 Jun;138(6):1535–1543. [PMC free article] [PubMed] [Google Scholar]
  39. Spector A. A., Gordon J. A., Moore S. A. Hydroxyeicosatetraenoic acids (HETEs). Prog Lipid Res. 1988;27(4):271–323. doi: 10.1016/0163-7827(88)90009-4. [DOI] [PubMed] [Google Scholar]
  40. Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
  41. Taylor-Papadimitriou J. Report on the first international workshop on carcinoma-associated mucins. Int J Cancer. 1991 Aug 19;49(1):1–5. doi: 10.1002/ijc.2910490102. [DOI] [PubMed] [Google Scholar]
  42. Weiss L., Orr F. W., Honn K. V. Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin Exp Metastasis. 1989 Mar-Apr;7(2):127–167. doi: 10.1007/BF01787020. [DOI] [PubMed] [Google Scholar]
  43. Young W. C., Herman I. M. Extracellular matrix modulation of endothelial cell shape and motility following injury in vitro. J Cell Sci. 1985 Feb;73:19–32. doi: 10.1242/jcs.73.1.19. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES