Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Aug 2;122(4):951–960. doi: 10.1083/jcb.122.4.951

Homophilic adhesion between Ig superfamily carcinoembryonic antigen molecules involves double reciprocal bonds

PMCID: PMC2119577  PMID: 8349740

Abstract

Both carcinoembryonic antigen (CEA) and neural cell adhesion molecule (NCAM) belong to the immunoglobulin supergene family and have been demonstrated to function as homotypic Ca(++)-independent intercellular adhesion molecules. CEA and NCAM cannot associate heterotypically indicating that they have different binding specificities. To define the domains of CEA involved in homotypic interaction, hybrid cDNAs consisting of various domains from CEA and NCAM were constructed and were transfected into a CHO-derived cell line; stable transfectant clones showing cell surface expression of CEA/NCAM chimeric-proteins were assessed for their adhesive properties by homotypic and heterotypic aggregation assays. The results indicate that all five of the Ig(C)-like domains of NCAM are required for intercellular adhesion while the COOH-terminal domain containing the fibronectin-like repeats is dispensable. The results also show that adhesion mediated by CEA involves binding between the Ig(V)-like amino-terminal domain and one of the Ig(C)-like internal repeat domains: thus while transfectants expressing constructs containing either the N domain or the internal domains alone were incapable of homotypic adhesion, they formed heterotypic aggregates when mixed. Furthermore, peptides consisting of both the N domain and the third internal repeat domain of CEA blocked CEA-mediated cell aggregation, thus providing direct evidence for the involvement of the two domains in adhesion. We therefore propose a novel model for interactions between immunoglobulin supergene family members in which especially strong binding is effected by double reciprocal interactions between the V-like domains and C-like domains of antiparallel CEA molecules on apposing cell surfaces.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong P. B. Cell sorting out: the self-assembly of tissues in vitro. Crit Rev Biochem Mol Biol. 1989;24(2):119–149. doi: 10.3109/10409238909086396. [DOI] [PubMed] [Google Scholar]
  2. Barthels D., Santoni M. J., Wille W., Ruppert C., Chaix J. C., Hirsch M. R., Fontecilla-Camps J. C., Goridis C. Isolation and nucleotide sequence of mouse NCAM cDNA that codes for a Mr 79,000 polypeptide without a membrane-spanning region. EMBO J. 1987 Apr;6(4):907–914. doi: 10.1002/j.1460-2075.1987.tb04837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barthels Dagmar, Vopper Gaby, Boned Annie, Cremer Harold, Wille Wolfgang. High Degree of NCAM Diversity Generated by Alternative RNA Splicing in Brain and Muscle. Eur J Neurosci. 1992;4(4):327–337. doi: 10.1111/j.1460-9568.1992.tb00880.x. [DOI] [PubMed] [Google Scholar]
  4. Bates P. A., Luo J., Sternberg M. J. A predicted three-dimensional structure for the carcinoembryonic antigen (CEA). FEBS Lett. 1992 Apr 20;301(2):207–214. doi: 10.1016/0014-5793(92)81249-l. [DOI] [PubMed] [Google Scholar]
  5. Beauchemin N., Benchimol S., Cournoyer D., Fuks A., Stanners C. P. Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol Cell Biol. 1987 Sep;7(9):3221–3230. doi: 10.1128/mcb.7.9.3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benchimol S., Fuks A., Jothy S., Beauchemin N., Shirota K., Stanners C. P. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell. 1989 Apr 21;57(2):327–334. doi: 10.1016/0092-8674(89)90970-7. [DOI] [PubMed] [Google Scholar]
  7. Bolling T. J., Mandecki W. An Escherichia coli expression vector for high-level production of heterologous proteins in fusion with CMP-KDO synthetase. Biotechniques. 1990 May;8(5):488–492. [PubMed] [Google Scholar]
  8. Boucher D., Cournoyer D., Stanners C. P., Fuks A. Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res. 1989 Feb 15;49(4):847–852. [PubMed] [Google Scholar]
  9. Cartier M., Chang M. W., Stanners C. P. Use of the Escherichia coli gene for asparagine synthetase as a selective marker in a shuttle vector capable of dominant transfection and amplification in animal cells. Mol Cell Biol. 1987 May;7(5):1623–1628. doi: 10.1128/mcb.7.5.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunningham B. A., Hemperly J. J., Murray B. A., Prediger E. A., Brackenbury R., Edelman G. M. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987 May 15;236(4803):799–806. doi: 10.1126/science.3576199. [DOI] [PubMed] [Google Scholar]
  11. Doherty P., Ashton S. V., Moore S. E., Walsh F. S. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell. 1991 Oct 4;67(1):21–33. doi: 10.1016/0092-8674(91)90569-k. [DOI] [PubMed] [Google Scholar]
  12. Driscoll P. C., Cyster J. G., Campbell I. D., Williams A. F. Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature. 1991 Oct 24;353(6346):762–765. doi: 10.1038/353762a0. [DOI] [PubMed] [Google Scholar]
  13. Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
  14. Edelman G. M. Expression of cell adhesion molecules during embryogenesis and regeneration. Exp Cell Res. 1985 Nov;161(1):1–16. doi: 10.1016/0014-4827(85)90485-9. [DOI] [PubMed] [Google Scholar]
  15. Filbin M. T., Walsh F. S., Trapp B. D., Pizzey J. A., Tennekoon G. I. Role of myelin P0 protein as a homophilic adhesion molecule. Nature. 1990 Apr 26;344(6269):871–872. doi: 10.1038/344871a0. [DOI] [PubMed] [Google Scholar]
  16. Frei T., von Bohlen und Halbach F., Wille W., Schachner M. Different extracellular domains of the neural cell adhesion molecule (N-CAM) are involved in different functions. J Cell Biol. 1992 Jul;118(1):177–194. doi: 10.1083/jcb.118.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hass G. M., Bolling T. J., Kinders R. J., Henslee J. G., Mandecki W., Dorwin S. A., Shively J. E. Preparation of synthetic polypeptide domains of carcinoembryonic antigen and their use in epitope mapping. Cancer Res. 1991 Apr 1;51(7):1876–1882. [PubMed] [Google Scholar]
  18. Hefta S. A., Hefta L. J., Lee T. D., Paxton R. J., Shively J. E. Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4648–4652. doi: 10.1073/pnas.85.13.4648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hostetter R. B., Augustus L. B., Mankarious R., Chi K. F., Fan D., Toth C., Thomas P., Jessup J. M. Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastasis. J Natl Cancer Inst. 1990 Mar 7;82(5):380–385. doi: 10.1093/jnci/82.5.380. [DOI] [PubMed] [Google Scholar]
  20. Hostetter R. B., Campbell D. E., Chi K. F., Kerckhoff S., Cleary K. R., Ullrich S., Thomas P., Jessup J. M. Carcinoembryonic antigen enhances metastatic potential of human colorectal carcinoma. Arch Surg. 1990 Mar;125(3):300–304. doi: 10.1001/archsurg.1990.01410150022004. [DOI] [PubMed] [Google Scholar]
  21. Jones E. Y., Davis S. J., Williams A. F., Harlos K., Stuart D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
  22. Kirschmeier P. T., Housey G. M., Johnson M. D., Perkins A. S., Weinstein I. B. Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences. DNA. 1988 Apr;7(3):219–225. doi: 10.1089/dna.1988.7.219. [DOI] [PubMed] [Google Scholar]
  23. Klein G., Langegger M., Goridis C., Ekblom P. Neural cell adhesion molecules during embryonic induction and development of the kidney. Development. 1988 Apr;102(4):749–761. doi: 10.1242/dev.102.4.749. [DOI] [PubMed] [Google Scholar]
  24. Levin L. V., Griffin T. W. Specific adhesion of carcinoembryonic antigen-bearing colorectal cancer cells to immobilized carcinoembryonic antigen. Cancer Lett. 1991 Nov;60(2):143–152. doi: 10.1016/0304-3835(91)90221-3. [DOI] [PubMed] [Google Scholar]
  25. Oikawa S., Inuzuka C., Kuroki M., Arakawa F., Matsuoka Y., Kosaki G., Nakazato H. A specific heterotypic cell adhesion activity between members of carcinoembryonic antigen family, W272 and NCA, is mediated by N-domains. J Biol Chem. 1991 May 5;266(13):7995–8001. [PubMed] [Google Scholar]
  26. Pollard J. W., Stanners C. P. Characterization of cell lines showing growth control isolated from both the wild type and a leucyl-tRNA synthetase mutant of Chinese hamster ovary cells. J Cell Physiol. 1979 Mar;98(3):571–585. doi: 10.1002/jcp.1040980315. [DOI] [PubMed] [Google Scholar]
  27. Rao Y., Wu X. F., Gariepy J., Rutishauser U., Siu C. H. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J Cell Biol. 1992 Aug;118(4):937–949. doi: 10.1083/jcb.118.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Recny M. A., Neidhardt E. A., Sayre P. H., Ciardelli T. L., Reinherz E. L. Structural and functional characterization of the CD2 immunoadhesion domain. Evidence for inclusion of CD2 in an alpha-beta protein folding class. J Biol Chem. 1990 May 25;265(15):8542–8549. [PubMed] [Google Scholar]
  29. Reyes A. A., Small S. J., Akeson R. At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development. Mol Cell Biol. 1991 Mar;11(3):1654–1661. doi: 10.1128/mcb.11.3.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rutishauser U., Acheson A., Hall A. K., Mann D. M., Sunshine J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988 Apr 1;240(4848):53–57. doi: 10.1126/science.3281256. [DOI] [PubMed] [Google Scholar]
  31. Rutishauser U., Jessell T. M. Cell adhesion molecules in vertebrate neural development. Physiol Rev. 1988 Jul;68(3):819–857. doi: 10.1152/physrev.1988.68.3.819. [DOI] [PubMed] [Google Scholar]
  32. Santoni M. J., Barthels D., Vopper G., Boned A., Goridis C., Wille W. Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J. 1989 Feb;8(2):385–392. doi: 10.1002/j.1460-2075.1989.tb03389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shively J. E., Beatty J. D. CEA-related antigens: molecular biology and clinical significance. Crit Rev Oncol Hematol. 1985;2(4):355–399. doi: 10.1016/s1040-8428(85)80008-1. [DOI] [PubMed] [Google Scholar]
  34. Springer T. A. Cell adhesion. A birth certificate for CD2. Nature. 1991 Oct 24;353(6346):704–705. doi: 10.1038/353704a0. [DOI] [PubMed] [Google Scholar]
  35. Stanners C. P., Eliceiri G. L., Green H. Two types of ribosome in mouse-hamster hybrid cells. Nat New Biol. 1971 Mar 10;230(10):52–54. doi: 10.1038/newbio230052a0. [DOI] [PubMed] [Google Scholar]
  36. Takami N., Misumi Y., Kuroki M., Matsuoka Y., Ikehara Y. Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen. J Biol Chem. 1988 Sep 5;263(25):12716–12720. [PubMed] [Google Scholar]
  37. Thompson J. A., Grunert F., Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal. 1991;5(5):344–366. doi: 10.1002/jcla.1860050510. [DOI] [PubMed] [Google Scholar]
  38. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  39. Zhou H., Fuks A., Stanners C. P. Specificity of intercellular adhesion mediated by various members of the immunoglobulin supergene family. Cell Growth Differ. 1990 May;1(5):209–215. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES