Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Aug 2;122(4):753–766. doi: 10.1083/jcb.122.4.753

Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components

PMCID: PMC2119580  PMID: 7688750

Abstract

Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belenguer P., Caizergues-Ferrer M., Labbé J. C., Dorée M., Amalric F. Mitosis-specific phosphorylation of nucleolin by p34cdc2 protein kinase. Mol Cell Biol. 1990 Jul;10(7):3607–3618. doi: 10.1128/mcb.10.7.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell P., Dabauvalle M. C., Scheer U. In vitro assembly of prenucleolar bodies in Xenopus egg extract. J Cell Biol. 1992 Sep;118(6):1297–1304. doi: 10.1083/jcb.118.6.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benavente R. Postmitotic nuclear reorganization events analyzed in living cells. Chromosoma. 1991 May;100(4):215–220. doi: 10.1007/BF00344154. [DOI] [PubMed] [Google Scholar]
  4. Christensen M. E., Banker N. Mapping of monoclonal antibody epitopes in the nucleolar protein fibrillarin (B-36) of Physarum polycephalum. Cell Biol Int Rep. 1992 Nov;16(11):1119–1131. doi: 10.1016/s0309-1651(05)80038-4. [DOI] [PubMed] [Google Scholar]
  5. Christensen M. E., Moloo J., Swischuk J. L., Schelling M. E. Characterization of the nucleolar protein, B-36, using monoclonal antibodies. Exp Cell Res. 1986 Sep;166(1):77–93. doi: 10.1016/0014-4827(86)90509-4. [DOI] [PubMed] [Google Scholar]
  6. Clark C. G., Cross G. A. Circular ribosomal RNA genes are a general feature of schizopyrenid amoebae. J Protozool. 1988 May;35(2):326–329. doi: 10.1111/j.1550-7408.1988.tb04352.x. [DOI] [PubMed] [Google Scholar]
  7. Clark C. G., Cross G. A. rRNA genes of Naegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid. Mol Cell Biol. 1987 Sep;7(9):3027–3031. doi: 10.1128/mcb.7.9.3027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fulton C., Dingle A. D. Appearance of the flagellate phenotype in populations of Naegleria amebae. Dev Biol. 1967 Feb;15(2):165–191. doi: 10.1016/0012-1606(67)90012-7. [DOI] [PubMed] [Google Scholar]
  9. Fulton C., Guerrini A. M. Mitotic synchrony in Nalegleria amebae. Exp Cell Res. 1969 Aug;56(2):194–200. doi: 10.1016/0014-4827(69)90002-0. [DOI] [PubMed] [Google Scholar]
  10. Fulton C., Walsh C. Cell differentiation and flagellar elongation in Naegleria gruberi. Dependence on transcription and translation. J Cell Biol. 1980 May;85(2):346–360. doi: 10.1083/jcb.85.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gendimenico G. J., Bouquin P. L., Tramposch K. M. Diphenylamine-colorimetric method for DNA assay: a shortened procedure by incubating samples at 50 degrees C. Anal Biochem. 1988 Aug 15;173(1):45–48. doi: 10.1016/0003-2697(88)90156-x. [DOI] [PubMed] [Google Scholar]
  12. Goessens G. Nucleolar structure. Int Rev Cytol. 1984;87:107–158. doi: 10.1016/s0074-7696(08)62441-9. [DOI] [PubMed] [Google Scholar]
  13. Hay E. D., Gurdon J. B. Fine structure of the nucleolus in normal and mutant Xenopus embryos. J Cell Sci. 1967 Jun;2(2):151–162. doi: 10.1242/jcs.2.2.151. [DOI] [PubMed] [Google Scholar]
  14. Henríquez R., Blobel G., Aris J. P. Isolation and sequencing of NOP1. A yeast gene encoding a nucleolar protein homologous to a human autoimmune antigen. J Biol Chem. 1990 Feb 5;265(4):2209–2215. [PubMed] [Google Scholar]
  15. Hernandez-Verdun D., Bouteille M., Ege T., Ringertz N. R. Fine structure of nucleoli in micronucleated cells. Exp Cell Res. 1979 Dec;124(2):223–235. doi: 10.1016/0014-4827(79)90198-8. [DOI] [PubMed] [Google Scholar]
  16. Hernandez-Verdun D., Robert-Nicoud M., Geraud G., Masson C. Behaviour of nucleolar proteins in nuclei lacking ribosomal genes. A study by confocal laser scanning microscopy. J Cell Sci. 1991 Jan;98(Pt 1):99–105. doi: 10.1242/jcs.98.1.99. [DOI] [PubMed] [Google Scholar]
  17. Jiménez-García L. F., Rothblum L. I., Busch H., Ochs R. L. Nucleologenesis: use of non-isotopic in situ hybridization and immunocytochemistry to compare the localization of rDNA and nucleolar proteins during mitosis. Biol Cell. 1989;65(3):239–246. doi: 10.1111/j.1768-322x.1989.tb00795.x. [DOI] [PubMed] [Google Scholar]
  18. Jones K. W. The role of the nucleolus in the formation of ribosomes. J Ultrastruct Res. 1965 Oct;13(3):257–262. doi: 10.1016/s0022-5320(65)80074-0. [DOI] [PubMed] [Google Scholar]
  19. Jordan E. G. Nucleolar nomenclature. J Cell Sci. 1984 Apr;67:217–220. doi: 10.1242/jcs.67.1.217. [DOI] [PubMed] [Google Scholar]
  20. Karasaki S. The ultrastructure and RNA metabolism of nucleoli in early sea urchin embryos. Exp Cell Res. 1968 Sep;52(1):13–26. doi: 10.1016/0014-4827(68)90543-0. [DOI] [PubMed] [Google Scholar]
  21. Karpen G. H., Schaefer J. E., Laird C. D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988 Dec;2(12B):1745–1763. doi: 10.1101/gad.2.12b.1745. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  24. Munro H. N. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113–176. doi: 10.1002/9780470110324.ch5. [DOI] [PubMed] [Google Scholar]
  25. Ochs R. L., Lischwe M. A., Shen E., Carroll R. E., Busch H. Nucleologenesis: composition and fate of prenucleolar bodies. Chromosoma. 1985;92(5):330–336. doi: 10.1007/BF00327463. [DOI] [PubMed] [Google Scholar]
  26. Ochs R. L., Lischwe M. A., Spohn W. H., Busch H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell. 1985;54(2):123–133. doi: 10.1111/j.1768-322x.1985.tb00387.x. [DOI] [PubMed] [Google Scholar]
  27. Phillips D. M., Phillips S. G. Repopulation of postmitotic nucleoli by preformed RNA. II. Ultrastructure. J Cell Biol. 1973 Jul;58(1):54–63. doi: 10.1083/jcb.58.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Phillips S. G. Repopulation of the postmitotic nucleolus by preformed RNA. J Cell Biol. 1972 Jun;53(3):611–623. doi: 10.1083/jcb.53.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Puvion-Dutilleul F., Mazan S., Nicoloso M., Pichard E., Bachellerie J. P., Puvion E. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol. 1992 Jun;58(1):149–162. [PubMed] [Google Scholar]
  30. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  31. Reeder R. H. rRNA synthesis in the nucleolus. Trends Genet. 1990 Dec;6(12):390–395. doi: 10.1016/0168-9525(90)90298-k. [DOI] [PubMed] [Google Scholar]
  32. STEVENS B. J. THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL. J Cell Biol. 1965 Mar;24:349–368. doi: 10.1083/jcb.24.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scheer U., Benavente R. Functional and dynamic aspects of the mammalian nucleolus. Bioessays. 1990 Jan;12(1):14–21. doi: 10.1002/bies.950120104. [DOI] [PubMed] [Google Scholar]
  34. Schimmang T., Tollervey D., Kern H., Frank R., Hurt E. C. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J. 1989 Dec 20;8(13):4015–4024. doi: 10.1002/j.1460-2075.1989.tb08584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwarzacher H. G., Wachtler F. The functional significance of nucleolar structures. Ann Genet. 1991;34(3-4):151–160. [PubMed] [Google Scholar]
  36. Swift H., Stevens B. J. Nucleolar-chromosomal interaction in microspores of maize. Natl Cancer Inst Monogr. 1966 Dec;23:145–166. [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wachtler F., Hartung M., Devictor M., Wiegant J., Stahl A., Schwarzacher H. G. Ribosomal DNA is located and transcribed in the dense fibrillar component of human Sertoli cell nucleoli. Exp Cell Res. 1989 Sep;184(1):61–71. doi: 10.1016/0014-4827(89)90364-9. [DOI] [PubMed] [Google Scholar]
  39. Wachtler F., Schöfer C., Mosgöller W., Weipoltshammer K., Schwarzacher H. G., Guichaoua M., Hartung M., Stahl A., Bergé-Lefranc J. L., Gonzalez I. Human ribosomal RNA gene repeats are localized in the dense fibrillar component of nucleoli: light and electron microscopic in situ hybridization in human Sertoli cells. Exp Cell Res. 1992 Jan;198(1):135–143. doi: 10.1016/0014-4827(92)90159-6. [DOI] [PubMed] [Google Scholar]
  40. Walsh C., Fulton C. Transcription during cell differentiation in Naegleria gruberi. Preferential synthesis of messenger RNA. Biochim Biophys Acta. 1973 Jun 8;312(1):52–71. doi: 10.1016/0005-2787(73)90052-x. [DOI] [PubMed] [Google Scholar]
  41. Warner J. R. The nucleolus and ribosome formation. Curr Opin Cell Biol. 1990 Jun;2(3):521–527. doi: 10.1016/0955-0674(90)90137-4. [DOI] [PubMed] [Google Scholar]
  42. Wright R., Rine J. Transmission electron microscopy and immunocytochemical studies of yeast: analysis of HMG-CoA reductase overproduction by electron microscopy. Methods Cell Biol. 1989;31:473–512. doi: 10.1016/s0091-679x(08)61624-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES