Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Aug 2;122(4):897–902. doi: 10.1083/jcb.122.4.897

Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells

PMCID: PMC2119585  PMID: 8349737

Abstract

Hematopoietic stem cells (HSCs) are characterized by their ability to differentiate into all hematopoietic cell lineages while retaining their capacity for self renewal. One of the predictions of this model is the existence of a heterogeneous pool of HSCs, some members of which are destined to become lineage restricted progenitor cells while others function to renew the stem cell pool. To test whether HSCs are heterogeneous with respect to cell cycle status, we determined the fraction of phenotypically defined murine HSCs (Thy1.1lo Lin-/lo Sca- 1+) that contain > 2n amount of DNA as measured by propidium iodide staining, Hoechst dye uptake and [3H]thymidine labeling; that fraction is 18-22%. In contrast, in the developing fetal liver, 40% of HSCs are in the S/G2/M phases of the cell cycle. Those HSCs which exhibit a low level of staining with rhodamine 123 are almost exclusively in G0/G1 (97%) whereas only 70% of HSCs which stain brightly for rhodamine 123 are in G0/G1. The injection of 100 G0/G1 HSCs rescued 90% of lethally irradiated mice in contrast to 100 S/G2/M HSCs, which protected only 25% of lethally irradiated recipients. Enhanced long-term donor-derived multilineage reconstitution of the peripheral blood was observed in recipients of 100 G0/G1 HSCs compared to recipients of 100 S/G2/M cells. These data indicate that a significant proportion of HSCs are actively proliferating during steady state hematopoiesis and that this subpopulation of cells exhibits reduced stem cell activity.

Full Text

The Full Text of this article is available as a PDF (673.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baines P., Visser J. W. Analysis and separation of murine bone marrow stem cells by H33342 fluorescence-activated cell sorting. Exp Hematol. 1983 Sep;11(8):701–708. [PubMed] [Google Scholar]
  2. Baum C. M., Weissman I. L., Tsukamoto A. S., Buckle A. M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2804–2808. doi: 10.1073/pnas.89.7.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertoncello I., Hodgson G. S., Bradley T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp Hematol. 1985 Nov;13(10):999–1006. [PubMed] [Google Scholar]
  4. Bruce W. R., Meeker B. E. Comparison of the sensitivity of hematopoietic colony-forming cells in different proliferative states to 5-fluorouracil. J Natl Cancer Inst. 1967 Mar;38(3):401–405. [PubMed] [Google Scholar]
  5. Chaudhary P. M., Roninson I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991 Jul 12;66(1):85–94. doi: 10.1016/0092-8674(91)90141-k. [DOI] [PubMed] [Google Scholar]
  6. Dick J. E., Magli M. C., Huszar D., Phillips R. A., Bernstein A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell. 1985 Aug;42(1):71–79. doi: 10.1016/s0092-8674(85)80102-1. [DOI] [PubMed] [Google Scholar]
  7. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  8. Hamori E., Arndt-Jovin D. J., Grimwade B. G., Jovin T. M. Selection of viable cells with known DNA content. Cytometry. 1980 Sep;1(2):132–135. doi: 10.1002/cyto.990010207. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. E. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood. 1980 Jan;55(1):77–81. [PubMed] [Google Scholar]
  10. Ikuta K., Weissman I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1502–1506. doi: 10.1073/pnas.89.4.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jordan C. T., Lemischka I. R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 1990 Feb;4(2):220–232. doi: 10.1101/gad.4.2.220. [DOI] [PubMed] [Google Scholar]
  12. Keller G., Paige C., Gilboa E., Wagner E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature. 1985 Nov 14;318(6042):149–154. doi: 10.1038/318149a0. [DOI] [PubMed] [Google Scholar]
  13. Li C. L., Johnson G. R. Rhodamine123 reveals heterogeneity within murine Lin-, Sca-1+ hemopoietic stem cells. J Exp Med. 1992 Jun 1;175(6):1443–1447. doi: 10.1084/jem.175.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magli M. C., Iscove N. N., Odartchenko N. Transient nature of early haematopoietic spleen colonies. Nature. 1982 Feb 11;295(5849):527–529. doi: 10.1038/295527a0. [DOI] [PubMed] [Google Scholar]
  15. Necas E., Znojil V., Frindel E. Thymidine suicide and hydroxyurea kill ratios accurately reflect the proliferative status of stem cells (CFU-S). Exp Hematol. 1989 Jan;17(1):53–55. [PubMed] [Google Scholar]
  16. Quesenberry P. J., Stanley K. A statistical analysis of murine stem cell suicide techniques. Blood. 1980 Dec;56(6):1000–1005. [PubMed] [Google Scholar]
  17. Ross E. A., Anderson N., Micklem H. S. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J Exp Med. 1982 Feb 1;155(2):432–444. doi: 10.1084/jem.155.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schofield R. The pluripotent stem cell. Clin Haematol. 1979 Jun;8(2):221–237. [PubMed] [Google Scholar]
  19. Smith L. G., Weissman I. L., Heimfeld S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2788–2792. doi: 10.1073/pnas.88.7.2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
  21. Spangrude G. J., Johnson G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7433–7437. doi: 10.1073/pnas.87.19.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spangrude G. J., Smith L., Uchida N., Ikuta K., Heimfeld S., Friedman J., Weissman I. L. Mouse hematopoietic stem cells. Blood. 1991 Sep 15;78(6):1395–1402. [PubMed] [Google Scholar]
  23. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  24. Taylor I. W. A rapid single step staining technique for DNA analysis by flow microfluorimetry. J Histochem Cytochem. 1980 Sep;28(9):1021–1024. doi: 10.1177/28.9.6157714. [DOI] [PubMed] [Google Scholar]
  25. Uchida N., Weissman I. L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med. 1992 Jan 1;175(1):175–184. doi: 10.1084/jem.175.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Visser J. W., Bol S. J., van den Engh G. Characterization and enrichment of murine hemopoietic stem cells by fluorescence activated cell sorting. Exp Hematol. 1981 Jul;9(6):644–655. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES