Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jul 2;122(2):349–359. doi: 10.1083/jcb.122.2.349

Microtubule nucleation and release from the neuronal centrosome

PMCID: PMC2119640  PMID: 8320258

Abstract

We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F. J., Pienkowski T. P., Baas P. W. Regional differences in microtubule dynamics in the axon. J Neurosci. 1993 Feb;13(2):856–866. doi: 10.1523/JNEUROSCI.13-02-00856.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baas P. W., Ahmad F. J. The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. J Cell Biol. 1992 Mar;116(5):1231–1241. doi: 10.1083/jcb.116.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baas P. W., Ahmad F. J. The transport properties of axonal microtubules establish their polarity orientation. J Cell Biol. 1993 Mar;120(6):1427–1437. doi: 10.1083/jcb.120.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baas P. W., Black M. M., Banker G. A. Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol. 1989 Dec;109(6 Pt 1):3085–3094. doi: 10.1083/jcb.109.6.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baas P. W., Black M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol. 1990 Aug;111(2):495–509. doi: 10.1083/jcb.111.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baas P. W., Deitch J. S., Black M. M., Banker G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8335–8339. doi: 10.1073/pnas.85.21.8335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baas P. W., Heidemann S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J Cell Biol. 1986 Sep;103(3):917–927. doi: 10.1083/jcb.103.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baas P. W., Joshi H. C. Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Cell Biol. 1992 Oct;119(1):171–178. doi: 10.1083/jcb.119.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baas P. W., Slaughter T., Brown A., Black M. M. Microtubule dynamics in axons and dendrites. J Neurosci Res. 1991 Sep;30(1):134–153. doi: 10.1002/jnr.490300115. [DOI] [PubMed] [Google Scholar]
  10. Bartlett W. P., Banker G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J Neurosci. 1984 Aug;4(8):1944–1953. doi: 10.1523/JNEUROSCI.04-08-01944.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Black M. M., Baas P. W. The basis of polarity in neurons. Trends Neurosci. 1989 Jun;12(6):211–214. doi: 10.1016/0166-2236(89)90124-0. [DOI] [PubMed] [Google Scholar]
  12. Black M. M., Keyser P., Sobel E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J Neurosci. 1986 Apr;6(4):1004–1012. doi: 10.1523/JNEUROSCI.06-04-01004.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  14. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  15. Brown A., Slaughter T., Black M. M. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J Cell Biol. 1992 Nov;119(4):867–882. doi: 10.1083/jcb.119.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bulinski J. C., Richards J. E., Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol. 1988 Apr;106(4):1213–1220. doi: 10.1083/jcb.106.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Burton P. R. Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 1988 Nov 8;473(1):107–115. doi: 10.1016/0006-8993(88)90321-6. [DOI] [PubMed] [Google Scholar]
  18. Burton P. R., Paige J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci U S A. 1981 May;78(5):3269–3273. doi: 10.1073/pnas.78.5.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cleveland D. W. Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem Sci. 1988 Sep;13(9):339–343. doi: 10.1016/0968-0004(88)90103-x. [DOI] [PubMed] [Google Scholar]
  20. Dotti C. G., Banker G. Intracellular organization of hippocampal neurons during the development of neuronal polarity. J Cell Sci Suppl. 1991;15:75–84. doi: 10.1242/jcs.1991.supplement_15.11. [DOI] [PubMed] [Google Scholar]
  21. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Euteneuer U., Schliwa M. Mechanism of centrosome positioning during the wound response in BSC-1 cells. J Cell Biol. 1992 Mar;116(5):1157–1166. doi: 10.1083/jcb.116.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Evans L., Mitchison T., Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol. 1985 Apr;100(4):1185–1191. doi: 10.1083/jcb.100.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fuller M. T., Wilson P. G. Force and counterforce in the mitotic spindle. Cell. 1992 Nov 13;71(4):547–550. doi: 10.1016/0092-8674(92)90587-3. [DOI] [PubMed] [Google Scholar]
  25. Gundersen G. G., Bulinski J. C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5946–5950. doi: 10.1073/pnas.85.16.5946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gundersen G. G., Khawaja S., Bulinski J. C. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol. 1987 Jul;105(1):251–264. doi: 10.1083/jcb.105.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jacobs M., Thomas C. The organization of 10 nm filaments and microtubules in embryonic neurons from spinal ganglia. J Neurocytol. 1982 Aug;11(4):657–669. doi: 10.1007/BF01262430. [DOI] [PubMed] [Google Scholar]
  29. Joshi H. C., Baas P. W. A new perspective on microtubules and axon growth. J Cell Biol. 1993 Jun;121(6):1191–1196. doi: 10.1083/jcb.121.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  31. Joshi H. C., Palacios M. J., McNamara L., Cleveland D. W. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992 Mar 5;356(6364):80–83. doi: 10.1038/356080a0. [DOI] [PubMed] [Google Scholar]
  32. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kimble M., Kuriyama R. Functional components of microtubule-organizing centers. Int Rev Cytol. 1992;136:1–50. doi: 10.1016/s0074-7696(08)62049-5. [DOI] [PubMed] [Google Scholar]
  34. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  35. Kupfer A., Louvard D., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2603–2607. doi: 10.1073/pnas.79.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kuriyama R., Borisy G. G. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J Cell Biol. 1981 Dec;91(3 Pt 1):822–826. doi: 10.1083/jcb.91.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. LYSER K. M. EARLY DIFFERENTIATION OF MOTOR NEUROBLASTS IN THE CHICK EMBRYO AS STUDIED BY ELECTRON MICROSCOPY. I. GENERAL ASPECTS. Dev Biol. 1964 Dec;10:433–466. doi: 10.1016/0012-1606(64)90054-5. [DOI] [PubMed] [Google Scholar]
  38. Lyser K. M. An electron-microscopic study of centrioles in differentiating motor neuroblasts. J Embryol Exp Morphol. 1968 Nov;20(3):343–354. [PubMed] [Google Scholar]
  39. McBeath E., Fujiwara K. Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells. Eur J Cell Biol. 1990 Jun;52(1):1–16. [PubMed] [Google Scholar]
  40. Oakley C. E., Oakley B. R. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989 Apr 20;338(6217):662–664. doi: 10.1038/338662a0. [DOI] [PubMed] [Google Scholar]
  41. Rogers K. A., Sandig M., McKee N. H., Kalnins V. I. The distribution of centrosomes in migrating endothelial cells during wound healing in situ. Biochem Cell Biol. 1992 Oct-Nov;70(10-11):1135–1141. doi: 10.1139/o92-159. [DOI] [PubMed] [Google Scholar]
  42. Sanders M. A., Salisbury J. L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1989 May;108(5):1751–1760. doi: 10.1083/jcb.108.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sasaki S., Stevens J. K., Bodick N. Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite. Brain Res. 1983 Jan 24;259(2):193–206. doi: 10.1016/0006-8993(83)91250-7. [DOI] [PubMed] [Google Scholar]
  44. Scheele R. B., Bergen L. G., Borisy G. G. Control of the structural fidelity of microtubules by initiation sites. J Mol Biol. 1982 Jan 25;154(3):485–500. doi: 10.1016/s0022-2836(82)80008-9. [DOI] [PubMed] [Google Scholar]
  45. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schütze K., Maniotis A., Schliwa M. The position of the microtubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8367–8371. doi: 10.1073/pnas.88.19.8367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sharp G. A., Weber K., Osborn M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol. 1982 Nov;29(1):97–103. [PubMed] [Google Scholar]
  48. Tennyson V. M. Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol. 1965 Jun;124(3):267–317. doi: 10.1002/cne.901240302. [DOI] [PubMed] [Google Scholar]
  49. Tucker J. The microtubule-organizing center. Bioessays. 1992 Dec;14(12):861–867. doi: 10.1002/bies.950141212. [DOI] [PubMed] [Google Scholar]
  50. Wehland J., Willingham M. C. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. II. Effects on cell movement, organization of microtubules, and intermediate filaments, and arrangement of Golgi elements. J Cell Biol. 1983 Nov;97(5 Pt 1):1476–1490. doi: 10.1083/jcb.97.5.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Whitlon D. S., Baas P. W. Improved methods for using glass coverslips in cell culture and electron microscopy. J Histochem Cytochem. 1992 Jun;40(6):875–877. doi: 10.1177/40.6.1588032. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES