Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jun 1;121(5):1065–1073. doi: 10.1083/jcb.121.5.1065

Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein

PMCID: PMC2119678  PMID: 8501116

Abstract

We have purified the transformation and shape change sensitive isoform of an actin associated polypeptide doublet previously described by us (Shapland, C., P. Lowings, and D. Lawson. 1988. J. Cell Biol. 107:153- 161) and have shown that it is evolutionarily conserved as far back as yeast. The purified protein: (a) binds directly to actin filaments at a ratio of 1:6 actin monomers, with a binding constant (Ka) of approximately 7.5 x 10(5) M-1; and (b) causes actin filament gelation within 2 min. Although these activities are controlled by ionic strength (and may be mediated by positively charged amino acid residues) the molecule remains as a monomer irrespective of ionic conditions. EM reveals that the addition of this protein to actin filaments converts them from a loose, random distribution into a tangled, cross-linked meshwork within 1 min, and discrete tightly aggregated foci after 10 min. By use of an "add-back" cell permeabilization system we can rebind this molecule specifically to actin filaments in cells from which it has previously been removed. Since the protein is transformation sensitive and gels actin, we have named it transgelin.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almendral J. M., Santarén J. F., Perera J., Zerial M., Bravo R. Expression, cloning and cDNA sequence of a fibroblast serum-regulated gene encoding a putative actin-associated protein (p27). Exp Cell Res. 1989 Apr;181(2):518–530. doi: 10.1016/0014-4827(89)90108-0. [DOI] [PubMed] [Google Scholar]
  2. Bretscher A. Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6849–6853. doi: 10.1073/pnas.78.11.6849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drenckhahn D., Engel K., Höfer D., Merte C., Tilney L., Tilney M. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. J Cell Biol. 1991 Feb;112(4):641–651. doi: 10.1083/jcb.112.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Griffith L. M., Pollard T. D. Cross-linking of actin filament networks by self-association and actin-binding macromolecules. J Biol Chem. 1982 Aug 10;257(15):9135–9142. [PubMed] [Google Scholar]
  5. Hartwig J. H., DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol. 1991 Feb;112(3):407–425. doi: 10.1083/jcb.112.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwig J. H., Kwiatkowski D. J. Actin-binding proteins. Curr Opin Cell Biol. 1991 Feb;3(1):87–97. doi: 10.1016/0955-0674(91)90170-4. [DOI] [PubMed] [Google Scholar]
  7. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  8. Hendricks M., Weintraub H. Tropomyosin is decreased in transformed cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5633–5637. doi: 10.1073/pnas.78.9.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Husain-Chishti A., Faquin W., Wu C. C., Branton D. Purification of erythrocyte dematin (protein 4.9) reveals an endogenous protein kinase that modulates actin-bundling activity. J Biol Chem. 1989 May 25;264(15):8985–8991. [PubMed] [Google Scholar]
  10. Koffer A., Gratzer W. B., Clarke G. D., Hales A. Phase equilibria of cytoplasmic actin of cultured epithelial (BHK) cells. J Cell Sci. 1983 May;61:191–218. doi: 10.1242/jcs.61.1.191. [DOI] [PubMed] [Google Scholar]
  11. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  12. Kwiatkowski D. J. Predominant induction of gelsolin and actin-binding protein during myeloid differentiation. J Biol Chem. 1988 Sep 25;263(27):13857–13862. [PubMed] [Google Scholar]
  13. Lawson D. Distribution of myosin and relationship to actin organization in cortical and subcortical areas of antibody-labelled, quick-frozen, deep-etched fibroblast cytoskeletons. Cell Motil Cytoskeleton. 1987;7(4):368–380. doi: 10.1002/cm.970070409. [DOI] [PubMed] [Google Scholar]
  14. Lawson D. Epinemin: a new protein associated with vimentin filaments in non-neural cells. J Cell Biol. 1983 Dec;97(6):1891–1905. doi: 10.1083/jcb.97.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leavitt J., Gunning P., Kedes L., Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. 1985 Aug 29-Sep 4Nature. 316(6031):840–842. doi: 10.1038/316840a0. [DOI] [PubMed] [Google Scholar]
  17. Lees-Miller J. P., Heeley D. H., Smillie L. B. An abundant and novel protein of 22 kDa (SM22) is widely distributed in smooth muscles. Purification from bovine aorta. Biochem J. 1987 Jun 15;244(3):705–709. doi: 10.1042/bj2440705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lees-Miller J. P., Heeley D. H., Smillie L. B., Kay C. M. Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem. 1987 Mar 5;262(7):2988–2993. [PubMed] [Google Scholar]
  19. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  20. MacLean-Fletcher S. D., Pollard T. D. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J Cell Biol. 1980 May;85(2):414–428. doi: 10.1083/jcb.85.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maruta H., Korn E. D. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J Biol Chem. 1977 Jan 10;252(1):399–402. [PubMed] [Google Scholar]
  22. Matsudaira P. Modular organization of actin crosslinking proteins. Trends Biochem Sci. 1991 Mar;16(3):87–92. doi: 10.1016/0968-0004(91)90039-x. [DOI] [PubMed] [Google Scholar]
  23. Muhlrad A. The isolated 21 kDa N-terminal fragment of myosin binds to actin in an ATP and ionic strength-dependent manner. Biochim Biophys Acta. 1991 Apr 29;1077(3):308–315. doi: 10.1016/0167-4838(91)90545-b. [DOI] [PubMed] [Google Scholar]
  24. Murphy D. B., Gray R. O., Grasser W. A., Pollard T. D. Direct demonstration of actin filament annealing in vitro. J Cell Biol. 1988 Jun;106(6):1947–1954. doi: 10.1083/jcb.106.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nishida W., Kitami Y., Abe M., Hiwada K. Gene cloning and nucleotide sequence of SM22 alpha from the chicken gizzard smooth muscle. Biochem Int. 1991 Mar;23(4):663–668. [PubMed] [Google Scholar]
  26. Owada M. K., Hakura A., Iida K., Yahara I., Sobue K., Kakiuchi S. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci U S A. 1984 May;81(10):3133–3137. doi: 10.1073/pnas.81.10.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pagliaro L., Taylor D. L. Aldolase exists in both the fluid and solid phases of cytoplasm. J Cell Biol. 1988 Sep;107(3):981–991. doi: 10.1083/jcb.107.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  29. Pearlstone J. R., Weber M., Lees-Miller J. P., Carpenter M. R., Smillie L. B. Amino acid sequence of chicken gizzard smooth muscle SM22 alpha. J Biol Chem. 1987 May 5;262(13):5985–5991. [PubMed] [Google Scholar]
  30. Pollard T. D. Actin. Curr Opin Cell Biol. 1990 Feb;2(1):33–40. doi: 10.1016/s0955-0674(05)80028-6. [DOI] [PubMed] [Google Scholar]
  31. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  32. Pollard T. D., Cooper J. A. Methods to characterize actin filament networks. Methods Enzymol. 1982;85(Pt B):211–233. doi: 10.1016/0076-6879(82)85022-2. [DOI] [PubMed] [Google Scholar]
  33. Pollard T. D. Cytoplasmic contractile proteins. J Cell Biol. 1981 Dec;91(3 Pt 2):156s–165s. doi: 10.1083/jcb.91.3.156s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Santarén J. F., Blüthmann H., MacDonald-Bravo H., Bravo R. Specific antibody against a protein (p27) present in nonestablished fibroblasts. A putative microfilament-associated protein. Exp Cell Res. 1987 Dec;173(2):341–348. doi: 10.1016/0014-4827(87)90275-8. [DOI] [PubMed] [Google Scholar]
  35. Schleicher M., André E., Hartmann H., Noegel A. A. Actin-binding proteins are conserved from slime molds to man. Dev Genet. 1988;9(4-5):521–530. doi: 10.1002/dvg.1020090428. [DOI] [PubMed] [Google Scholar]
  36. Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
  37. Shapland C., Lowings P., Lawson D. Identification of new actin-associated polypeptides that are modified by viral transformation and changes in cell shape. J Cell Biol. 1988 Jul;107(1):153–161. doi: 10.1083/jcb.107.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  39. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  40. Stossel T. P. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989 Nov 5;264(31):18261–18264. [PubMed] [Google Scholar]
  41. Thweatt R., Lumpkin C. K., Jr, Goldstein S. A novel gene encoding a smooth muscle protein is overexpressed in senescent human fibroblasts. Biochem Biophys Res Commun. 1992 Aug 31;187(1):1–7. doi: 10.1016/s0006-291x(05)81449-4. [DOI] [PubMed] [Google Scholar]
  42. Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Totty N. F., Waterfield M. D., Hsuan J. J. Accelerated high-sensitivity microsequencing of proteins and peptides using a miniature reaction cartridge. Protein Sci. 1992 Sep;1(9):1215–1224. doi: 10.1002/pro.5560010914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Van Roy F., Mareel M. Tumour invasion: effects of cell adhesion and motility. Trends Cell Biol. 1992 Jun;2(6):163–169. doi: 10.1016/0962-8924(92)90035-l. [DOI] [PubMed] [Google Scholar]
  45. Vancompernolle K., Gimona M., Herzog M., Van Damme J., Vandekerckhove J., Small V. Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin. FEBS Lett. 1990 Nov 12;274(1-2):146–150. doi: 10.1016/0014-5793(90)81350-w. [DOI] [PubMed] [Google Scholar]
  46. Vandekerckhove J. Actin-binding proteins. Curr Opin Cell Biol. 1990 Feb;2(1):41–50. doi: 10.1016/s0955-0674(05)80029-8. [DOI] [PubMed] [Google Scholar]
  47. Vandekerckhove J., Bauw G., Vancompernolle K., Honoré B., Celis J. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells. J Cell Biol. 1990 Jul;111(1):95–102. doi: 10.1083/jcb.111.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Walsh M. P. The Ayerst Award Lecture 1990. Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem Cell Biol. 1991 Dec;69(12):771–800. doi: 10.1139/o91-119. [DOI] [PubMed] [Google Scholar]
  49. Wang K., Feramisco J. R., Ash J. F. Fluorescent localization of contractile proteins in tissue culture cells. Methods Enzymol. 1982;85(Pt B):514–562. doi: 10.1016/0076-6879(82)85050-7. [DOI] [PubMed] [Google Scholar]
  50. Wang K. Filamin, a new high-molecular-weight protein found in smooth muscle and nonmuscle cells. Purification and properties of chicken gizzard filamin. Biochemistry. 1977 May 3;16(9):1857–1865. doi: 10.1021/bi00628a015. [DOI] [PubMed] [Google Scholar]
  51. Way M., Weeds A. Actin-binding proteins. Cytoskeletal ups and downs. Nature. 1990 Mar 22;344(6264):292–294. doi: 10.1038/344292a0. [DOI] [PubMed] [Google Scholar]
  52. Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
  53. Wilkins J. A., Lin S. A re-examination of the interaction of vinculin with actin. J Cell Biol. 1986 Mar;102(3):1085–1092. doi: 10.1083/jcb.102.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yamashiro-Matsumura S., Matsumura F. Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol. 1988 Jun;106(6):1973–1983. doi: 10.1083/jcb.106.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. de Arruda M. V., Watson S., Lin C. S., Leavitt J., Matsudaira P. Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J Cell Biol. 1990 Sep;111(3):1069–1079. doi: 10.1083/jcb.111.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES