Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jun 2;121(6):1271–1280. doi: 10.1083/jcb.121.6.1271

Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver

PMCID: PMC2119700  PMID: 8509448

Abstract

According to Poole et al. (1970, J. Cell Biol. 45:408-415), newly synthesized peroxisomal proteins are incorporated uniformly into peroxisomes (PO) of different size classes, suggesting that rat hepatic PO form a homogeneous population. There is however increasing cytochemical and biochemical evidence that PO in rat liver are heterogenous, undergoing significant modulations in shape and size in process of PO morphogenesis (Yamamoto and Fahimi, 1987. J. Cell Biol. 105:713-722). In the present study, the kinetics of incorporation of newly synthesized proteins into distinct PO-subpopulations have been studied using short-term in vivo labeling (5-90 min). Two distinct "heavy" and "light" crude PO fractions were prepared by differential pelleting from normal and regenerating liver, and highly purified PO were subsequently isolated by density-dependent metrizamide gradient centrifugation according to Volkl and Fahimi (1985. Eur. J. Biochem. 149:257-265). The peroxisomal fractions banded at 1.20 and 1.24 g x cm- 3. They differed in their mean diameters and form-factors and particularly in respect to the activity of beta-oxidation enzymes which was higher in the "light" PO. Whereas the "light" PO exhibited a single immunoreactive band with the antibody to the 70-kD peroxisomal membrane protein the "heavy" PO contained an additional (68 kD) band. In pulse- labeling experiments "light" PO showed clearly a higher initial rate of incorporation than the "heavy" PO. The relative specific activity in the "heavy" PO fraction, however increased progressively reaching that of "light" PO by 90 min. These observations provide evidence for the existence of different PO populations in rat liver which differ in their morphological and biochemical properties as well as in their rates of incorporation of new proteins.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa J., Chen W. W., Kelley R. I., Tada K., Moser H. W., Chen G. L. Low-density particles (W-particles) containing catalase in Zellweger syndrome and normal fibroblasts. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10084–10088. doi: 10.1073/pnas.88.22.10084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angermüller S., Fahimi H. D. Heterogenous staining of D-amino acid oxidase in peroxisomes of rat liver and kidney. A light and electron microscopic study. Histochemistry. 1988;88(3-6):277–285. [PubMed] [Google Scholar]
  3. Angermüller S., Fahimi H. D. Ultrastructural cytochemical localization of uricase in peroxisomes of rat liver. J Histochem Cytochem. 1986 Feb;34(2):159–165. doi: 10.1177/34.2.3080517. [DOI] [PubMed] [Google Scholar]
  4. Baumgart E., Völkl A., Hashimoto T., Fahimi H. D. Biogenesis of peroxisomes: immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops. J Cell Biol. 1989 Jun;108(6):2221–2231. doi: 10.1083/jcb.108.6.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beier K., Fahimi H. D. Application of automatic image analysis for quantitative morphological studies of peroxisomes in rat liver in conjunction with cytochemical staining with 3-3'-diaminobenzidine and immunocytochemistry. Microsc Res Tech. 1992 Jun 1;21(4):271–282. doi: 10.1002/jemt.1070210404. [DOI] [PubMed] [Google Scholar]
  7. Beier K., Völkl A., Hashimoto T., Fahimi H. D. Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting. Eur J Cell Biol. 1988 Aug;46(3):383–393. [PubMed] [Google Scholar]
  8. Borst P. How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim Biophys Acta. 1986 May 5;866(4):179–203. doi: 10.1016/0167-4781(86)90044-8. [DOI] [PubMed] [Google Scholar]
  9. Chen N. H., Crane D. I., Masters C. J. Analysis of the major integral membrane proteins of peroxisomes from mouse liver. Biochim Biophys Acta. 1988 Nov 22;945(2):135–144. doi: 10.1016/0005-2736(88)90476-2. [DOI] [PubMed] [Google Scholar]
  10. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  11. Fahimi H. D., Reinicke A., Sujatta M., Yokota S., Ozel M., Hartig F., Stegmeier K. The short- and long-term effects of bezafibrate in the rat. Ann N Y Acad Sci. 1982;386:111–135. doi: 10.1111/j.1749-6632.1982.tb21410.x. [DOI] [PubMed] [Google Scholar]
  12. Flatmark T., Christiansen E. N., Kryvi H. Polydispersity of rat liver peroxisomes induced by the hypolipidemic and carcinogenic agent clofibrate. Eur J Cell Biol. 1981 Apr;24(1):62–69. [PubMed] [Google Scholar]
  13. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goglia F., Liverini G., Lanni A., Iossa S., Barletta A. Morphological and functional modifications of rat liver peroxisomal subpopulations during cold exposure. Exp Biol. 1989;48(3):127–133. [PubMed] [Google Scholar]
  15. Hartl F. U., Just W. W. Integral membrane polypeptides of rat liver peroxisomes: topology and response to different metabolic states. Arch Biochem Biophys. 1987 May 15;255(1):109–119. doi: 10.1016/0003-9861(87)90300-6. [DOI] [PubMed] [Google Scholar]
  16. Hashimoto T., Kuwabara T., Usuda N., Nagata T. Purification of membrane polypeptides of rat liver peroxisomes. J Biochem. 1986 Aug;100(2):301–310. doi: 10.1093/oxfordjournals.jbchem.a121716. [DOI] [PubMed] [Google Scholar]
  17. Heinemann P., Just W. W. Peroxisomal protein import. In vivo evidence for a novel translocation competent compartment. FEBS Lett. 1992 Mar 30;300(2):179–182. doi: 10.1016/0014-5793(92)80191-i. [DOI] [PubMed] [Google Scholar]
  18. Kamijo K., Taketani S., Yokota S., Osumi T., Hashimoto T. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem. 1990 Mar 15;265(8):4534–4540. [PubMed] [Google Scholar]
  19. Klucis E., Crane D. I., Hughes J. L., Poulos A., Masters C. J. Identification of a catalase-negative sub-population of peroxisomes induced in mouse liver by clofibrate. Biochim Biophys Acta. 1991 Jul 8;1074(2):294–301. doi: 10.1016/0304-4165(91)90167-f. [DOI] [PubMed] [Google Scholar]
  20. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lazarow P. B., De Duve C. Intermediates in the biosynthesis of peroxisomal catalase in rat liver. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1198–1204. doi: 10.1016/0006-291x(71)90145-8. [DOI] [PubMed] [Google Scholar]
  23. Lazarow P. B., Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol. 1985;1:489–530. doi: 10.1146/annurev.cb.01.110185.002421. [DOI] [PubMed] [Google Scholar]
  24. Lazarow P. B., de Duve C. The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol. 1973 Nov;59(2 Pt 1):507–524. doi: 10.1083/jcb.59.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Le Hir M., Dubach U. C. The activities of peroxisomal oxidases in periportal and perivenous zones of the rat liver acinus. Histochemistry. 1980;69(1):95–99. doi: 10.1007/BF00508370. [DOI] [PubMed] [Google Scholar]
  26. Leighton F., Poole B., Lazarow P. B., De Duve C. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol. 1969 May;41(2):521–535. doi: 10.1083/jcb.41.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lüers G., Beier K., Hashimoto T., Fahimi H. D., Völkl A. Biogenesis of peroxisomes: sequential biosynthesis of the membrane and matrix proteins in the course of hepatic regeneration. Eur J Cell Biol. 1990 Aug;52(2):175–184. [PubMed] [Google Scholar]
  28. Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
  29. PETERS T., Jr The biosynthesis of rat serum albumin. II. Intracellular phenomena in the secretion of newly formed albumin. J Biol Chem. 1962 Apr;237:1186–1189. [PubMed] [Google Scholar]
  30. Poole B., Higashi T., De Duve C. The synthesis and turnover of rat liver peroxisomes. 3. The size distribution of peroxisomes and the incorporation of new catalase. J Cell Biol. 1970 May;45(2):408–415. doi: 10.1083/jcb.45.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rigatuso J. L., Legg P. G., Wood R. L. Microbody formation in regenerating rat liver. J Histochem Cytochem. 1970 Dec;18(12):893–900. doi: 10.1177/18.12.893. [DOI] [PubMed] [Google Scholar]
  32. Roels F., Cornelis A. Heterogeneity of catalase staining in human hepatocellular peroxisomes. J Histochem Cytochem. 1989 Mar;37(3):331–337. doi: 10.1177/37.3.2918222. [DOI] [PubMed] [Google Scholar]
  33. Völkl A., Fahimi H. D. Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem. 1985 Jun 3;149(2):257–265. doi: 10.1111/j.1432-1033.1985.tb08920.x. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto K., Fahimi H. D. Biogenesis of peroxisomes in regenerating rat liver. I. Sequential changes of catalase and urate oxidase detected by ultrastructural cytochemistry. Eur J Cell Biol. 1987 Jun;43(3):293–300. [PubMed] [Google Scholar]
  35. Yamamoto K., Fahimi H. D. Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol. 1987 Aug;105(2):713–722. doi: 10.1083/jcb.105.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zaar K., Völkl A., Fahimi H. D. Isolation and characterization of peroxisomes from the renal cortex of beef, sheep, and cat. Eur J Cell Biol. 1986 Mar;40(1):16–24. [PubMed] [Google Scholar]
  37. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES