Abstract
Amoebae of the eukaryotic microorganism Dictyostelium discoideum were found to contain an interconnected array of tubules and cisternae whose membranes were studded with 15-nm-diameter "pegs." Comparison of the ultrastructure and freeze-fracture behavior of these pegs with similar structures found in other cells and tissues indicated that they were the head domains of vacuolar-type proton pumps. Supporting this identification, the pegs were observed to decorate and clump when broken amoebae were exposed to an antiserum against the B subunit of mammalian vacuolar H(+)-ATPase. The appearance of the peg-rich cisternae in quick-frozen amoebae depended on their osmotic environment: under hyperosmotic conditions, the cisternae were flat with many narrow tubular extensions, while under hypo-osmotic conditions the cisternae ranged from bulbous to spherical. In all cases, however, their contents deep etched like pure water. These properties indicated that the interconnected tubules and cisternae comprise the contractile vacuole system of Dictyostelium. Earlier studies had demonstrated that contractile vacuole membranes in Dictyostelium are extremely rich in calmodulin (Zhu, Q., and M. Clarke, 1992, J. Cell Biol. 118: 347-358). Light microscopic immunofluorescence confirmed that antibodies against the vacuolar proton pump colocalized with anti-calmodulin antibodies on these organelles. Time-lapse video recording of living amoebae imaged by interference-reflection microscopy, or by fluorescence microscopy after staining contractile vacuole membranes with potential-sensitive styryl dyes, revealed the extent and dynamic interrelationship of the cisternal and tubular elements in Dictyostelium's contractile vacuole system. The high density of proton pumps throughout its membranes suggests that the generation of a proton gradient is likely to be an important factor in the mechanism of fluid accumulation by contractile vacuoles.
Full Text
The Full Text of this article is available as a PDF (9.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Awqati Q. Proton-translocating ATPases. Annu Rev Cell Biol. 1986;2:179–199. doi: 10.1146/annurev.cb.02.110186.001143. [DOI] [PubMed] [Google Scholar]
- Allen R. D., Staehelin L. A. Digestive system membranes: freeze-fracture evidence for differentiation and flow in Paramecium. J Cell Biol. 1981 Apr;89(1):9–20. doi: 10.1083/jcb.89.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. D. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella. J Cell Biol. 1973 Feb;56(2):559–579. doi: 10.1083/jcb.56.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amos W. B. Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. J Cell Sci. 1972 Jan;10(1):95–122. doi: 10.1242/jcs.10.1.95. [DOI] [PubMed] [Google Scholar]
- Betz W. J., Mao F., Bewick G. S. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci. 1992 Feb;12(2):363–375. doi: 10.1523/JNEUROSCI.12-02-00363.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair H. C., Teitelbaum S. L., Ghiselli R., Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. doi: 10.1126/science.2528207. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol. 1983 Jan;81(1):53–94. doi: 10.1085/jgp.81.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowers B., Korn E. D. Cytochemical identification of phosphatase activity in the contractile vacuole of Acanthamoeba castellanii. J Cell Biol. 1973 Dec;59(3):784–791. doi: 10.1083/jcb.59.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J Cell Biol. 1968 Oct;39(1):95–111. doi: 10.1083/jcb.39.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. Vesicle recycling and cell-specific function in kidney epithelial cells. Annu Rev Physiol. 1989;51:771–784. doi: 10.1146/annurev.ph.51.030189.004011. [DOI] [PubMed] [Google Scholar]
- CURTIS A. S. THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY. J Cell Biol. 1964 Feb;20:199–215. doi: 10.1083/jcb.20.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chastellier C. D., Quiviger B., Ryter A. Observations on the functioning of the contractile vacuole of Dictyostelium discoideum with the electron microscope. J Ultrastruct Res. 1978 Mar;62(3):220–227. doi: 10.1016/s0022-5320(78)80019-7. [DOI] [PubMed] [Google Scholar]
- Clarke M., Bazari W. L., Kayman S. C. Isolation and properties of calmodulin from Dictyostelium discoideum. J Bacteriol. 1980 Jan;141(1):397–400. doi: 10.1128/jb.141.1.397-400.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke M., Kayman S. C., Riley K. Density-dependent induction of discoidin-I synthesis in exponentially growing cells of Dictyostelium discoideum. Differentiation. 1987;34(2):79–87. doi: 10.1111/j.1432-0436.1987.tb00053.x. [DOI] [PubMed] [Google Scholar]
- Cotter D. A., Miura-Santo L. Y., Hohl H. R. Ultrastructural changes during germination of Dictyostelium discoideum spores. J Bacteriol. 1969 Nov;100(2):1020–1026. doi: 10.1128/jb.100.2.1020-1026.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotter D. A., Raper K. B. Spore germination in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1966 Sep;56(3):880–887. doi: 10.1073/pnas.56.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doggenweiler C. F., Heuser J. E. Ultrastructure of the prawn nerve sheaths. Role of fixative and osmotic pressure in vesiculation of thin cytoplasmic laminae. J Cell Biol. 1967 Aug;34(2):407–420. doi: 10.1083/jcb.34.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukui Y., Yumura S., Yumura T. K. Agar-overlay immunofluorescence: high-resolution studies of cytoskeletal components and their changes during chemotaxis. Methods Cell Biol. 1987;28:347–356. doi: 10.1016/s0091-679x(08)61655-6. [DOI] [PubMed] [Google Scholar]
- GITTLESON S. M., SEARS D. F. EFFECTS OF CO2 ON PARAMECIUM MULTIMICRONUCLEATUM. J Protozool. 1964 May;11:191–199. doi: 10.1111/j.1550-7408.1964.tb01740.x. [DOI] [PubMed] [Google Scholar]
- Gingell D., Todd I., Owens N. Interaction between intracellular vacuoles and the cell surface analysed by finite aperture theory interference reflection microscopy. J Cell Sci. 1982 Apr;54:287–298. doi: 10.1242/jcs.54.1.287. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Frostig R. D., Lieke E., Hildesheim R. Optical imaging of neuronal activity. Physiol Rev. 1988 Oct;68(4):1285–1366. doi: 10.1152/physrev.1988.68.4.1285. [DOI] [PubMed] [Google Scholar]
- Harvey W. R., Cioffi M., Dow J. A., Wolfersberger M. G. Potassium ion transport ATPase in insect epithelia. J Exp Biol. 1983 Sep;106:91–117. doi: 10.1242/jeb.106.1.91. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heywood P. Osmoregulation in the alga Vacuolaria virescens. Structure of the contractile vacuole and the nature of its association with the Golgi apparatus. J Cell Sci. 1978 Jun;31:213–224. doi: 10.1242/jcs.31.1.213. [DOI] [PubMed] [Google Scholar]
- Hulen D., Baron A., Salisbury J., Clarke M. Production and specificity of monoclonal antibodies against calmodulin from Dictyostelium discoideum. Cell Motil Cytoskeleton. 1991;18(2):113–122. doi: 10.1002/cm.970180206. [DOI] [PubMed] [Google Scholar]
- Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
- Kallio D. M., Garant P. R., Minkin C. Evidence of coated membranes in the ruffled border of the osteoclast. J Ultrastruct Res. 1971 Oct;37(1):169–177. doi: 10.1016/s0022-5320(71)80048-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MERCER E. H. An electron microscopic study of Amoeba proteus. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):216–232. doi: 10.1098/rspb.1959.0016. [DOI] [PubMed] [Google Scholar]
- Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
- Maren T. H. The kinetics of HCO3- synthesis related to fluid secretion, pH control, and CO2 elimination. Annu Rev Physiol. 1988;50:695–717. doi: 10.1146/annurev.ph.50.030188.003403. [DOI] [PubMed] [Google Scholar]
- Mayer L. M., Iverson R. M. Osmotic concentration of the contractile vacuole of Amoeba proteus following UV-light irradiation. Experientia. 1967 Feb 15;23(2):120–120. doi: 10.1007/BF02135953. [DOI] [PubMed] [Google Scholar]
- McKanna J. A. Fine structure of fluid segregation organelles of Paramecium contractile vacuoles. J Ultrastruct Res. 1976 Jan;54(1):1–10. doi: 10.1016/s0022-5320(76)80002-0. [DOI] [PubMed] [Google Scholar]
- McKanna J. A. Permeability modulating membrane coats. I. Fine structure of fluid segregation organelles of peritrich contractile vacuoles. J Cell Biol. 1974 Oct;63(1):317–322. doi: 10.1083/jcb.63.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriyama Y., Nelson N. Lysosomal H+-translocating ATPase has a similar subunit structure to chromaffin granule H+-ATPase complex. Biochim Biophys Acta. 1989 Apr 14;980(2):241–247. doi: 10.1016/0005-2736(89)90405-7. [DOI] [PubMed] [Google Scholar]
- Nelson H., Nelson N. Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A. 1990 May;87(9):3503–3507. doi: 10.1073/pnas.87.9.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991 Feb;12(2):71–75. doi: 10.1016/0165-6147(91)90501-i. [DOI] [PubMed] [Google Scholar]
- Nolta K. V., Padh H., Steck T. L. Acidosomes from Dictyostelium. Initial biochemical characterization. J Biol Chem. 1991 Sep 25;266(27):18318–18323. [PubMed] [Google Scholar]
- Noumi T., Beltrán C., Nelson H., Nelson N. Mutational analysis of yeast vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1938–1942. doi: 10.1073/pnas.88.5.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orci L., Humbert F., Brown D., Perrelet A. Membrane ultrastructure in urinary tubules. Int Rev Cytol. 1981;73:183–242. doi: 10.1016/s0074-7696(08)61289-9. [DOI] [PubMed] [Google Scholar]
- Quiviger B., de Chastellier C., Ryter A. Cytochemical demonstration of alkaline phosphatase in the contractile vacuole of Dictyostelium discoideum. J Ultrastruct Res. 1978 Mar;62(3):228–236. doi: 10.1016/s0022-5320(78)80020-3. [DOI] [PubMed] [Google Scholar]
- RUDZINSKA M. A. An electron microscope study of the contractile vacuole in Tokophrya infusionum. J Biophys Biochem Cytol. 1958 Mar 25;4(2):195–202. doi: 10.1083/jcb.4.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddick D. H. Contractile vacuole in the amoeba Pelomyxa carolinensis. Am J Physiol. 1968 Sep;215(3):736–740. doi: 10.1152/ajplegacy.1968.215.3.736. [DOI] [PubMed] [Google Scholar]
- Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt-Nielsen B., Schrauger C. R. Amoeba proteus: Studying the Contractile Vacuole by Micropuncture. Science. 1963 Feb 15;139(3555):606–607. doi: 10.1126/science.139.3555.606. [DOI] [PubMed] [Google Scholar]
- Stetson D. L., Steinmetz P. R. Alpha and beta types of carbonic anhydrase-rich cells in turtle bladder. Am J Physiol. 1985 Oct;249(4 Pt 2):F553–F565. doi: 10.1152/ajprenal.1985.249.4.F553. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter A., Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–217. doi: 10.1007/BF01870127. [DOI] [PubMed] [Google Scholar]
- Wieczorek H., Putzenlechner M., Zeiske W., Klein U. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem. 1991 Aug 15;266(23):15340–15347. [PubMed] [Google Scholar]
- Yurko M. A., Gluck S. Production and characterization of a monoclonal antibody to vacuolar H+ATPase of renal epithelia. J Biol Chem. 1987 Nov 15;262(32):15770–15779. [PubMed] [Google Scholar]
- Zeuthen T. From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. Biochim Biophys Acta. 1992 Aug 14;1113(2):229–258. doi: 10.1016/0304-4157(92)90040-h. [DOI] [PubMed] [Google Scholar]
- Zhu Q., Clarke M. Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum. J Cell Biol. 1992 Jul;118(2):347–358. doi: 10.1083/jcb.118.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Q., Liu T., Clarke M. Calmodulin and the contractile vacuole complex in mitotic cells of Dictyostelium discoideum. J Cell Sci. 1993 Apr;104(Pt 4):1119–1127. doi: 10.1242/jcs.104.4.1119. [DOI] [PubMed] [Google Scholar]
- Zigmond S. H., Sullivan S. J. Sensory adaptation of leukocytes to chemotactic peptides. J Cell Biol. 1979 Aug;82(2):517–527. doi: 10.1083/jcb.82.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Duijn B., Vogelzang S. A. The membrane potential of the cellular slime mold Dictyostelium discoideum is mainly generated by an electrogenic proton pump. Biochim Biophys Acta. 1989 Aug 7;983(2):186–192. doi: 10.1016/0005-2736(89)90232-0. [DOI] [PubMed] [Google Scholar]