Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jun 2;121(6):1281–1289. doi: 10.1083/jcb.121.6.1281

N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist

PMCID: PMC2119704  PMID: 8509449

Abstract

Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc- FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle- Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl- phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist- induced receptor clustering was less apparent after dhcB treatment. To summarize, this work shows that activated N-formyl peptide receptors aggregate and immobilize in the plane of the neutrophil plasma membrane before internalization, a process that is affected, but not significantly reversed, by cytochalasin. The results are consistent with a model where arrested receptors are associated mainly with a cytochalasin-insensitive pool of cytoskeletal elements.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baehner R. L., Boxer L. A., Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood. 1976 Aug;48(2):309–313. [PubMed] [Google Scholar]
  3. Baggiolini M., Wymann M. P. Turning on the respiratory burst. Trends Biochem Sci. 1990 Feb;15(2):69–72. doi: 10.1016/0968-0004(90)90179-f. [DOI] [PubMed] [Google Scholar]
  4. Becker E. L. A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides. J Reticuloendothel Soc. 1979 Dec;26(Suppl):701–709. [PubMed] [Google Scholar]
  5. Bengtsson T., Dahlgren C., Stendahl O., Andersson T. Actin assembly and regulation of neutrophil function: effects of cytochalasin B and tetracaine on chemotactic peptide-induced O2- production and degranulation. J Leukoc Biol. 1991 Mar;49(3):236–244. doi: 10.1002/jlb.49.3.236. [DOI] [PubMed] [Google Scholar]
  6. Bengtsson T., Stendahl O., Andersson T. The role of the cytosolic free Ca2+ transient for fMet-Leu-Phe induced actin polymerization in human neutrophils. Eur J Cell Biol. 1986 Dec;42(2):338–343. [PubMed] [Google Scholar]
  7. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  8. Bommakanti R. K., Bokoch G. M., Tolley J. O., Schreiber R. E., Siemsen D. W., Klotz K. N., Jesaitis A. J. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation. J Biol Chem. 1992 Apr 15;267(11):7576–7581. [PubMed] [Google Scholar]
  9. Boulay F., Tardif M., Brouchon L., Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun. 1990 May 16;168(3):1103–1109. doi: 10.1016/0006-291x(90)91143-g. [DOI] [PubMed] [Google Scholar]
  10. Boulay F., Tardif M., Brouchon L., Vignais P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 1990 Dec 18;29(50):11123–11133. doi: 10.1021/bi00502a016. [DOI] [PubMed] [Google Scholar]
  11. Cassimeris L., McNeill H., Zigmond S. H. Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J Cell Biol. 1990 Apr;110(4):1067–1075. doi: 10.1083/jcb.110.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dahlgren C. Polymorphonuclear leukocyte chemiluminescence induced by formylmethionyl-leucyl-phenylalanine and phorbol myristate acetate: effects of catalase and superoxide dismutase. Agents Actions. 1987 Jun;21(1-2):104–112. doi: 10.1007/BF01974930. [DOI] [PubMed] [Google Scholar]
  13. Freer R. J., Day A. R., Radding J. A., Schiffmann E., Aswanikumar S., Showell H. J., Becker E. L. Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry. 1980 May 27;19(11):2404–2410. doi: 10.1021/bi00552a019. [DOI] [PubMed] [Google Scholar]
  14. Helfman D. M., Appelbaum B. D., Vogler W. R., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils. Biochem Biophys Res Commun. 1983 Mar 29;111(3):847–853. doi: 10.1016/0006-291x(83)91376-1. [DOI] [PubMed] [Google Scholar]
  15. Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
  16. Jacobson K. Lateral diffusion in membranes. Cell Motil. 1983;3(5-6):367–373. doi: 10.1002/cm.970030504. [DOI] [PubMed] [Google Scholar]
  17. Jesaitis A. J., Allen R. A. Activation of the neutrophil respiratory burst by chemoattractants: regulation of the N-formyl peptide receptor in the plasma membrane. J Bioenerg Biomembr. 1988 Dec;20(6):679–707. doi: 10.1007/BF00762548. [DOI] [PubMed] [Google Scholar]
  18. Jesaitis A. J., Tolley J. O., Allen R. A. Receptor-cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J Biol Chem. 1986 Oct 15;261(29):13662–13669. [PubMed] [Google Scholar]
  19. Jesaitis A. J., Tolley J. O., Bokoch G. M., Allen R. A. Regulation of chemoattractant receptor interaction with transducing proteins by organizational control in the plasma membrane of human neutrophils. J Cell Biol. 1989 Dec;109(6 Pt 1):2783–2790. doi: 10.1083/jcb.109.6.2783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johansson B., Sundqvist T., Magnusson K. E. Regulation of the lateral diffusion of WGA-labeled glycoconjugates in human leukocytes. Comparison between adult granulocytes and differentiating promyelocytic HL60 cells. Cell Biophys. 1987 Oct;10(3):233–244. doi: 10.1007/BF02797343. [DOI] [PubMed] [Google Scholar]
  21. Lew D. P. Receptor signalling and intracellular calcium in neutrophil activation. Eur J Clin Invest. 1989 Aug;19(4):338–346. doi: 10.1111/j.1365-2362.1989.tb00240.x. [DOI] [PubMed] [Google Scholar]
  22. Lin S., Snyder C. E., Jr High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. J Biol Chem. 1977 Aug 10;252(15):5464–5471. [PubMed] [Google Scholar]
  23. Lin S., Wilkins J. A., Cribbs D. H., Grumet M., Lin D. C. Proteins and complexes that affect actin-filament assembly and interactions. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):625–632. doi: 10.1101/sqb.1982.046.01.058. [DOI] [PubMed] [Google Scholar]
  24. McKay D. A., Kusel J. R., Wilkinson P. C. Studies of chemotactic factor-induced polarity in human neutrophils. Lipid mobility, receptor distribution and the time-sequence of polarization. J Cell Sci. 1991 Nov;100(Pt 3):473–479. doi: 10.1242/jcs.100.3.473. [DOI] [PubMed] [Google Scholar]
  25. Nathan C. F. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest. 1987 Dec;80(6):1550–1560. doi: 10.1172/JCI113241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nathan C. F. Respiratory burst in adherent human neutrophils: triggering by colony-stimulating factors CSF-GM and CSF-G. Blood. 1989 Jan;73(1):301–306. [PubMed] [Google Scholar]
  27. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Niedel J. E., Kahane I., Cuatrecasas P. Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science. 1979 Sep 28;205(4413):1412–1414. doi: 10.1126/science.472759. [DOI] [PubMed] [Google Scholar]
  29. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  30. O'Shea J. J., Brown E. J., Gaither T. A., Takahashi T., Frank M. M. Tumor-promoting phorbol esters induce rapid internalization of the C3b receptor via a cytoskeleton-dependent mechanism. J Immunol. 1985 Aug;135(2):1325–1330. [PubMed] [Google Scholar]
  31. Omann G. M., Sklar L. A. Response of neutrophils to stimulus infusion: differential sensitivity of cytoskeletal activation and oxidant production. J Cell Biol. 1988 Sep;107(3):951–958. doi: 10.1083/jcb.107.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peters R., Brünger A., Schulten K. Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells. Proc Natl Acad Sci U S A. 1981 Feb;78(2):962–966. doi: 10.1073/pnas.78.2.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  34. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schmitt M., Bültmann B. Fluorescent chemotactic peptides as tools to identify the f-Met-Leu-Phe receptor on human granulocytes. Biochem Soc Trans. 1990 Apr;18(2):219–222. doi: 10.1042/bst0180219. [DOI] [PubMed] [Google Scholar]
  36. Seligmann B., Chused T. M., Gallin J. I. Differential binding of chemoattractant peptide to subpopulations of human neutrophils. J Immunol. 1984 Nov;133(5):2641–2646. [PubMed] [Google Scholar]
  37. Sklar L. A., Finney D. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem. 1984 May 10;259(9):5661–5669. [PubMed] [Google Scholar]
  38. Sklar L. A., Hyslop P. A., Oades Z. G., Omann G. M., Jesaitis A. J., Painter R. G., Cochrane C. G. Signal transduction and ligand-receptor dynamics in the human neutrophil. Transient responses and occupancy-response relations at the formyl peptide receptor. J Biol Chem. 1985 Sep 25;260(21):11461–11467. [PubMed] [Google Scholar]
  39. Sklar L. A., Jesaitis A. J., Painter R. G., Cochrane C. G. Ligand/receptor internalization: a spectroscopic analysis and a comparison of ligand binding, cellular response, and internalization by human neutrophils. J Cell Biochem. 1982;20(2):193–202. doi: 10.1002/jcb.240200210. [DOI] [PubMed] [Google Scholar]
  40. Snyderman R., Pike M. C. Chemoattractant receptors on phagocytic cells. Annu Rev Immunol. 1984;2:257–281. doi: 10.1146/annurev.iy.02.040184.001353. [DOI] [PubMed] [Google Scholar]
  41. Särndahl E., Lindroth M., Bengtsson T., Fällman M., Gustavsson J., Stendahl O., Andersson T. Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein. J Cell Biol. 1989 Dec;109(6 Pt 1):2791–2799. doi: 10.1083/jcb.109.6.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Walter R. J., Marasco W. A. Direct visualization of formylpeptide receptor binding on rounded and polarized human neutrophils: cellular and receptor heterogeneity. J Leukoc Biol. 1987 May;41(5):377–391. doi: 10.1002/jlb.41.5.377. [DOI] [PubMed] [Google Scholar]
  43. Zigmond S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977 Nov;75(2 Pt 1):606–616. doi: 10.1083/jcb.75.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES