Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jun 2;121(6):1385–1395. doi: 10.1083/jcb.121.6.1385

Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts

PMCID: PMC2119705  PMID: 8389770

Abstract

Sphingosylphosphorylcholine (SPC), or lysophingomyelin, a wide-spectrum growth promoting agent for a variety of cell types (Desai, N. N., and S. Spiegel. 1991. Biochem. Biophys. Res. Comm. 181: 361-366), stimulates cellular proliferation of quiescent Swiss 3T3 fibroblasts to a greater extent than other known growth factors or than the structurally related molecules, sphingosine and sphingosine-1- phosphate. SPC potentiated the mitogenic effect of an activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate, and did not compete with phorbol esters for binding to protein kinase C in intact Swiss 3T3 fibroblasts. However, downregulation of protein kinase C, by prolonged treatment with phorbol ester, reduced, but did not eliminate, the ability of SPC to stimulate DNA synthesis, indicating that SPC may act via both protein kinase C-dependent and -independent signaling pathways. SPC induced a rapid rise in intracellular free calcium ([Ca2+]i) in viable 3T3 fibroblasts determined with a digital imaging system. Although the increases in [Ca2+]i were observed even in the absence of calcium in the external medium, no increase in the levels of inositol phosphates could be detected in response to mitogenic concentrations of SPC. Furthermore, in contrast to sphingosine or sphingosine-1-phosphate, the mitogenic effect of SPC was not accompanied by increases in phosphatidic acid levels or changes in cAMP levels. SPC, but not sphingosine or sphingosine-1-phosphate, stimulates the release of arachidonic acid. Therefore, the ability of SPC to act an extremely potent mitogen may be due to activation of signaling pathway(s) distinct from those used by sphingosine or sphingosine-1- phosphate.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C., Gullick W. J. Differences in phorbol-ester-induced down-regulation of protein kinase C between cell lines. Biochem J. 1989 Feb 1;257(3):905–911. doi: 10.1042/bj2570905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asaoka Y., Oka M., Yoshida K., Nishizuka Y. Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ion for T-lymphocyte activation. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1378–1385. doi: 10.1016/0006-291x(91)91046-f. [DOI] [PubMed] [Google Scholar]
  3. Asaoka Y., Oka M., Yoshida K., Sasaki Y., Nishizuka Y. Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6447–6451. doi: 10.1073/pnas.89.14.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  5. Bocckino S. B., Wilson P. B., Exton J. H. Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6210–6213. doi: 10.1073/pnas.88.14.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brady R. O., Bradley R. M., Young O. M., Kaller H. An alternative pathway for the enzymatic synthesis of sphingomyelin. J Biol Chem. 1965 Sep;240(9):3693–3694. [PubMed] [Google Scholar]
  7. Breittmayer J. P., Aussel C., Farahifar D., Cousin J. L., Fehlmann M. A phosphatidic acid-sensitive intracellular pool of calcium is released by anti-CD3 in Jurkat T cells. Immunology. 1991 Jun;73(2):134–139. [PMC free article] [PubMed] [Google Scholar]
  8. Burch R. M., Axelrod J. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6374–6378. doi: 10.1073/pnas.84.18.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlson R. O., Levitan I. B. Regulation of intracellular free arachidonic acid in Aplysia nervous system. J Membr Biol. 1990 Jul;116(3):249–260. doi: 10.1007/BF01868464. [DOI] [PubMed] [Google Scholar]
  10. Chow S. C., Jondal M. Polyunsaturated free fatty acids stimulate an increase in cytosolic Ca2+ by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in T cells through a mechanism independent of phosphoinositide turnover. J Biol Chem. 1990 Jan 15;265(2):902–907. [PubMed] [Google Scholar]
  11. Davis R. J., Gironès N., Faucher M. Two alternative mechanisms control the interconversion of functional states of the epidermal growth factor receptor. J Biol Chem. 1988 Apr 15;263(11):5373–5379. [PubMed] [Google Scholar]
  12. Desai N. N., Spiegel S. Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines. Biochem Biophys Res Commun. 1991 Nov 27;181(1):361–366. doi: 10.1016/s0006-291x(05)81427-5. [DOI] [PubMed] [Google Scholar]
  13. Desai N. N., Zhang H., Olivera A., Mattie M. E., Spiegel S. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J Biol Chem. 1992 Nov 15;267(32):23122–23128. [PubMed] [Google Scholar]
  14. Dicker P., Rozengurt E. Stimulation of DNA synthesis by tumour promoter and pure mitogenic factors. Nature. 1978 Dec 14;276(5689):723–726. doi: 10.1038/276723a0. [DOI] [PubMed] [Google Scholar]
  15. Dressler K. A., Kan C. C., Kolesnick R. N. Sphingomyelin synthesis is involved in adherence during macrophage differentiation of HL-60 cells. J Biol Chem. 1991 Jun 25;266(18):11522–11527. [PubMed] [Google Scholar]
  16. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  17. Faucher M., Gironès N., Hannun Y. A., Bell R. M., Davis R. J. Regulation of the epidermal growth factor receptor phosphorylation state by sphingosine in A431 human epidermoid carcinoma cells. J Biol Chem. 1988 Apr 15;263(11):5319–5327. [PubMed] [Google Scholar]
  18. Felding-Habermann B., Igarashi Y., Fenderson B. A., Park L. S., Radin N. S., Inokuchi J., Strassmann G., Handa K., Hakomori S. A ceramide analogue inhibits T cell proliferative response through inhibition of glycosphingolipid synthesis and enhancement of N,N-dimethylsphingosine synthesis. Biochemistry. 1990 Jul 3;29(26):6314–6322. doi: 10.1021/bi00478a028. [DOI] [PubMed] [Google Scholar]
  19. Fujino Y., Negishi T. Investigation of the enzymatic synthesis of sphingomyelin. Biochim Biophys Acta. 1968 Mar 4;152(2):428–430. doi: 10.1016/0005-2760(68)90058-1. [DOI] [PubMed] [Google Scholar]
  20. Fujino Y., Negishi T., Ito S. Enzymic synthesis of sphingosylphosphorylcholine. Biochem J. 1968 Sep;109(2):310–311. doi: 10.1042/bj1090310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
  22. Ghosh T. K., Bian J. H., Short A. D., Rybak S. L., Gill D. L. Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. J Biol Chem. 1991 Dec 25;266(36):24690–24697. [PubMed] [Google Scholar]
  23. Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
  24. Gil J., Higgins T., Rozengurt E. Mastoparan, a novel mitogen for Swiss 3T3 cells, stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate accumulation. J Cell Biol. 1991 May;113(4):943–950. doi: 10.1083/jcb.113.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990 Nov 5;265(31):18713–18716. [PubMed] [Google Scholar]
  26. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  27. Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
  28. Hesketh T. R., Morris J. D., Moore J. P., Metcalfe J. C. Ca2+ and pH responses to sequential additions of mitogens in single 3T3 fibroblasts: correlations with DNA synthesis. J Biol Chem. 1988 Aug 25;263(24):11879–11886. [PubMed] [Google Scholar]
  29. Igarashi Y., Kitamura K., Zhou Q. H., Hakomori S. A role of lyso-phosphatidylcholine in GM3-dependent inhibition of epidermal growth factor receptor autophosphorylation in A431 plasma membranes. Biochem Biophys Res Commun. 1990 Oct 15;172(1):77–84. doi: 10.1016/s0006-291x(05)80175-5. [DOI] [PubMed] [Google Scholar]
  30. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marggraf W. D., Kanfer J. N. The phosphorylcholine acceptor in the phosphatidylcholine:ceramide cholinephosphotransferase reaction. Is the enzyme a transferase or a hydrolase? Biochim Biophys Acta. 1984 May 11;793(3):346–353. doi: 10.1016/0005-2760(84)90248-0. [DOI] [PubMed] [Google Scholar]
  32. McCaffrey P. G., Rosner M. R., Kikkawa U., Sekiguchi K., Ogita K., Ase K., Nishizuka Y. Characterization of protein kinase C from normal and transformed cultured murine fibroblasts. Biochem Biophys Res Commun. 1987 Jul 15;146(1):140–146. doi: 10.1016/0006-291x(87)90702-9. [DOI] [PubMed] [Google Scholar]
  33. Merrill A. H., Jr Cell regulation by sphingosine and more complex sphingolipids. J Bioenerg Biomembr. 1991 Feb;23(1):83–104. doi: 10.1007/BF00768840. [DOI] [PubMed] [Google Scholar]
  34. Merrill A. H., Jr, Stevens V. L. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta. 1989 Feb 9;1010(2):131–139. doi: 10.1016/0167-4889(89)90152-3. [DOI] [PubMed] [Google Scholar]
  35. Millar J. B., Rozengurt E. Arachidonic acid release by bombesin. A novel postreceptor target for heterologous mitogenic desensitization. J Biol Chem. 1990 Nov 15;265(32):19973–19979. [PubMed] [Google Scholar]
  36. Murayama T., Ui M. Phosphatidic acid may stimulate membrane receptors mediating adenylate cyclase inhibition and phospholipid breakdown in 3T3 fibroblasts. J Biol Chem. 1987 Apr 25;262(12):5522–5529. [PubMed] [Google Scholar]
  37. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  38. Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
  39. Pagano R. E., Weinstein J. N. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468. doi: 10.1146/annurev.bb.07.060178.002251. [DOI] [PubMed] [Google Scholar]
  40. Pagano R. E. What is the fate of diacylglycerol produced at the Golgi apparatus? Trends Biochem Sci. 1988 Jun;13(6):202–205. doi: 10.1016/0968-0004(88)90082-5. [DOI] [PubMed] [Google Scholar]
  41. Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem. 1988 Sep 5;263(25):12472–12477. [PubMed] [Google Scholar]
  42. Powis G., Seewald M. J., Sehgal I., Iaizzo P. A., Olsen R. A. Platelet-derived growth factor stimulates non-mitochondrial Ca2+ uptake and inhibits mitogen-induced Ca2+ signaling in Swiss 3T3 fibroblasts. J Biol Chem. 1990 Jun 25;265(18):10266–10273. [PubMed] [Google Scholar]
  43. Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
  44. Rozengurt E., Legg A., Strang G., Courtenay-Luck N. Cyclic AMP: a mitogenic signal for Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4392–4396. doi: 10.1073/pnas.78.7.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rustenbeck I., Lenzen S. Effects of lysophosphatidylcholine and arachidonic acid on the regulation of intracellular Ca2+ transport. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jan-Feb;339(1-2):37–41. doi: 10.1007/BF00165123. [DOI] [PubMed] [Google Scholar]
  46. Schneider E. G., Kennedy E. P. Phosphorylation of ceramide by diglyceride kinase preparations from Escherichia coli. J Biol Chem. 1973 May 25;248(10):3739–3741. [PubMed] [Google Scholar]
  47. Spiegel S. Inhibition of protein kinase C-dependent cellular proliferation by interaction of endogenous ganglioside GM1 with the B subunit of cholera toxin. J Biol Chem. 1989 Oct 5;264(28):16512–16517. [PubMed] [Google Scholar]
  48. Spiegel S., Panagiotopoulos C. Mitogenesis of 3T3 fibroblasts induced by endogenous ganglioside is not mediated by cAMP, protein kinase C, or phosphoinositides turnover. Exp Cell Res. 1988 Aug;177(2):414–427. doi: 10.1016/0014-4827(88)90474-0. [DOI] [PubMed] [Google Scholar]
  49. Stoffel W., Melzner I. Studies in vitro on the biosynthesis of ceramide and sphingomyelin. A reevaluation of proposed pathways. Hoppe Seylers Z Physiol Chem. 1980 May;361(5):755–771. doi: 10.1515/bchm2.1980.361.1.755. [DOI] [PubMed] [Google Scholar]
  50. Strasberg P. M., Callahan J. W. Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine. Biochem Cell Biol. 1988 Dec;66(12):1322–1332. doi: 10.1139/o88-153. [DOI] [PubMed] [Google Scholar]
  51. Sugiyama E., Uemura K., Hara A., Taketomi T. Effects of various lysosphingolipids on cell growth, morphology and lipid composition in three neuroblastoma cell lines. Biochem Biophys Res Commun. 1990 Jun 15;169(2):673–679. doi: 10.1016/0006-291x(90)90383-x. [DOI] [PubMed] [Google Scholar]
  52. Takuwa N., Kumada M., Yamashita K., Takuwa Y. Mechanisms of bombesin-induced arachidonate mobilization in Swiss 3T3 fibroblasts. J Biol Chem. 1991 Aug 5;266(22):14237–14243. [PubMed] [Google Scholar]
  53. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yu C. L., Tsai M. H., Stacey D. W. Cellular ras activity and phospholipid metabolism. Cell. 1988 Jan 15;52(1):63–71. doi: 10.1016/0092-8674(88)90531-4. [DOI] [PubMed] [Google Scholar]
  55. Zhang H., Buckley N. E., Gibson K., Spiegel S. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem. 1990 Jan 5;265(1):76–81. [PubMed] [Google Scholar]
  56. Zhang H., Desai N. N., Murphey J. M., Spiegel S. Increases in phosphatidic acid levels accompany sphingosine-stimulated proliferation of quiescent Swiss 3T3 cells. J Biol Chem. 1990 Dec 5;265(34):21309–21316. [PubMed] [Google Scholar]
  57. Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. de Erausquin G. A., Manev H., Guidotti A., Costa E., Brooker G. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8017–8021. doi: 10.1073/pnas.87.20.8017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. van Corven E. J., Groenink A., Jalink K., Eichholtz T., Moolenaar W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989 Oct 6;59(1):45–54. doi: 10.1016/0092-8674(89)90868-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES