Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Jun 2;121(6):1191–1196. doi: 10.1083/jcb.121.6.1191

A new perspective on microtubules and axon growth

PMCID: PMC2119710  PMID: 8509443

Full Text

The Full Text of this article is available as a PDF (788.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F. J., Pienkowski T. P., Baas P. W. Regional differences in microtubule dynamics in the axon. J Neurosci. 1993 Feb;13(2):856–866. doi: 10.1523/JNEUROSCI.13-02-00856.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baas P. W., Ahmad F. J. The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. J Cell Biol. 1992 Mar;116(5):1231–1241. doi: 10.1083/jcb.116.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baas P. W., Ahmad F. J. The transport properties of axonal microtubules establish their polarity orientation. J Cell Biol. 1993 Mar;120(6):1427–1437. doi: 10.1083/jcb.120.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baas P. W., Black M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol. 1990 Aug;111(2):495–509. doi: 10.1083/jcb.111.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baas P. W., Deitch J. S., Black M. M., Banker G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8335–8339. doi: 10.1073/pnas.85.21.8335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baas P. W., Heidemann S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J Cell Biol. 1986 Sep;103(3):917–927. doi: 10.1083/jcb.103.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baas P. W., Joshi H. C. Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Cell Biol. 1992 Oct;119(1):171–178. doi: 10.1083/jcb.119.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bamburg J. R., Bray D., Chapman K. Assembly of microtubules at the tip of growing axons. Nature. 1986 Jun 19;321(6072):788–790. doi: 10.1038/321788a0. [DOI] [PubMed] [Google Scholar]
  9. Black M. M., Baas P. W. The basis of polarity in neurons. Trends Neurosci. 1989 Jun;12(6):211–214. doi: 10.1016/0166-2236(89)90124-0. [DOI] [PubMed] [Google Scholar]
  10. Brady S. T. Molecular motors in the nervous system. Neuron. 1991 Oct;7(4):521–533. doi: 10.1016/0896-6273(91)90365-7. [DOI] [PubMed] [Google Scholar]
  11. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  12. Bray D., Thomas C., Shaw G. Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5226–5229. doi: 10.1073/pnas.75.10.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans L., Mitchison T., Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol. 1985 Apr;100(4):1185–1191. doi: 10.1083/jcb.100.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuller M. T., Wilson P. G. Force and counterforce in the mitotic spindle. Cell. 1992 Nov 13;71(4):547–550. doi: 10.1016/0092-8674(92)90587-3. [DOI] [PubMed] [Google Scholar]
  15. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  17. Joshi H. C., Palacios M. J., McNamara L., Cleveland D. W. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992 Mar 5;356(6364):80–83. doi: 10.1038/356080a0. [DOI] [PubMed] [Google Scholar]
  18. Keith C. H. Slow transport of tubulin in the neurites of differentiated PC12 cells. Science. 1987 Jan 16;235(4786):337–339. doi: 10.1126/science.2432662. [DOI] [PubMed] [Google Scholar]
  19. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  20. Koonce M. P., Schliwa M. Reactivation of organelle movements along the cytoskeletal framework of a giant freshwater ameba. J Cell Biol. 1986 Aug;103(2):605–612. doi: 10.1083/jcb.103.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lasek R. J., Brady S. T. The axon: a prototype for studying expressional cytoplasm. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):113–124. doi: 10.1101/sqb.1982.046.01.015. [DOI] [PubMed] [Google Scholar]
  22. Lasek R. J. Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):313–327. doi: 10.1098/rstb.1982.0135. [DOI] [PubMed] [Google Scholar]
  23. Lim S. S., Edson K. J., Letourneau P. C., Borisy G. G. A test of microtubule translocation during neurite elongation. J Cell Biol. 1990 Jul;111(1):123–130. doi: 10.1083/jcb.111.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lim S. S., Sammak P. J., Borisy G. G. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J Cell Biol. 1989 Jul;109(1):253–263. doi: 10.1083/jcb.109.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mandelkow E. M., Mandelkow E. Unstained microtubules studied by cryo-electron microscopy. Substructure, supertwist and disassembly. J Mol Biol. 1985 Jan 5;181(1):123–135. doi: 10.1016/0022-2836(85)90330-4. [DOI] [PubMed] [Google Scholar]
  26. Mogensen M. M., Tucker J. B., Stebbings H. Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J Cell Biol. 1989 Apr;108(4):1445–1452. doi: 10.1083/jcb.108.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morris J. R., Lasek R. J. Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm. J Cell Biol. 1984 Jun;98(6):2064–2076. doi: 10.1083/jcb.98.6.2064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nicklas R. B., Lee G. M., Rieder C. L., Rupp G. Mechanically cut mitotic spindles: clean cuts and stable microtubules. J Cell Sci. 1989 Nov;94(Pt 3):415–423. doi: 10.1242/jcs.94.3.415. [DOI] [PubMed] [Google Scholar]
  29. Oakley C. E., Oakley B. R. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989 Apr 20;338(6217):662–664. doi: 10.1038/338662a0. [DOI] [PubMed] [Google Scholar]
  30. Okabe S., Hirokawa N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J Cell Biol. 1992 Apr;117(1):105–120. doi: 10.1083/jcb.117.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okabe S., Hirokawa N. Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. J Cell Biol. 1993 Mar;120(5):1177–1186. doi: 10.1083/jcb.120.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Okabe S., Hirokawa N. Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells. J Cell Biol. 1988 Aug;107(2):651–664. doi: 10.1083/jcb.107.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okabe S., Hirokawa N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature. 1990 Feb 1;343(6257):479–482. doi: 10.1038/343479a0. [DOI] [PubMed] [Google Scholar]
  34. Reinsch S. S., Mitchison T. J., Kirschner M. Microtubule polymer assembly and transport during axonal elongation. J Cell Biol. 1991 Oct;115(2):365–379. doi: 10.1083/jcb.115.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanders M. A., Salisbury J. L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1989 May;108(5):1751–1760. doi: 10.1083/jcb.108.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Satir P. Mechanisms and controls of microtubule sliding in cilia. Symp Soc Exp Biol. 1982;35:179–201. [PubMed] [Google Scholar]
  37. Tennyson V. M. Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol. 1965 Jun;124(3):267–317. doi: 10.1002/cne.901240302. [DOI] [PubMed] [Google Scholar]
  38. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
  40. Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]
  41. Vigers G. P., Coue M., McIntosh J. R. Fluorescent microtubules break up under illumination. J Cell Biol. 1988 Sep;107(3):1011–1024. doi: 10.1083/jcb.107.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White L. A., Baas P. W., Heidemann S. R. Microtubule stability in severed axons. J Neurocytol. 1987 Dec;16(6):775–784. doi: 10.1007/BF01611985. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES