Abstract
Attachment of circulating tumor cells to endothelial cell adhesion molecules restricted to select vascular compartments is thought to be responsible for site-specific metastasis. Lung-metastatic rat R3230AC- MET breast and RPC-2 prostate carcinoma cells bound outside-out endothelial cell membrane vesicles, prepared by perfusion of the rat lung vasculature with a low-strength formaldehyde solution, in significantly higher numbers than their nonmetastatic counterparts R3230AC-LR and RPC-LR. In contrast, vesicles derived from the vasculature of a nonmetastasized organ (e.g., hind leg muscle) showed no binding preference for either of the four tumor cell lines. Lung- derived endothelial vesicles were used here to generate mAbs against lung endothelial cell adhesion molecules. The first group of mice were actively immunized against lung endothelial vesicles, whereas the second group was injected with syngeneic mouse antiserum against leg endothelial vesicles before active immunization with lung endothelial vesicles. 17 hybridoma supernatants obtained from the two fusions bound lung vesicles with at least a 10-fold higher affinity than leg vesicles. Seven (four obtained by a passive/active immunization protocol) stained rat capillary endothelia. One mAb, mAb 8.6A3, inhibited specific adhesion of lung-derived vesicles to lung-metastatic breast and prostate carcinoma cells. Purification of the antigen (endothelial cell adhesion molecule) from rat lung extracts revealed a protein with a 110-kD mol wt. NH2-terminal sequencing established identity with dipeptidyl peptidase IV which had been reported to serve as a fibronectin-binding protein. These results indicate that vesicles obtained from in situ perfused organs are a convenient immunogen for the production of antibodies to compartment-specific endothelial cell surface molecules, and reinforce the concept that endothelial cell surface components are selectively recognized by circulating cancer cells during metastasis formation.
Full Text
The Full Text of this article is available as a PDF (5.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alby L., Auerbach R. Differential adhesion of tumor cells to capillary endothelial cells in vitro. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5739–5743. doi: 10.1073/pnas.81.18.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aruffo A., Dietsch M. T., Wan H., Hellström K. E., Hellström I. Granule membrane protein 140 (GMP140) binds to carcinomas and carcinoma-derived cell lines. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2292–2296. doi: 10.1073/pnas.89.6.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auerbach R., Alby L., Morrissey L. W., Tu M., Joseph J. Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res. 1985 May;29(3):401–411. doi: 10.1016/0026-2862(85)90028-7. [DOI] [PubMed] [Google Scholar]
- Auerbach R., Lu W. C., Pardon E., Gumkowski F., Kaminska G., Kaminski M. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res. 1987 Mar 15;47(6):1492–1496. [PubMed] [Google Scholar]
- Bargatze R. F., Wu N. W., Weissman I. L., Butcher E. C. High endothelial venule binding as a predictor of the dissemination of passaged murine lymphomas. J Exp Med. 1987 Oct 1;166(4):1125–1131. doi: 10.1084/jem.166.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blood C. H., Zetter B. R. Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta. 1990 Jun 1;1032(1):89–118. doi: 10.1016/0304-419x(90)90014-r. [DOI] [PubMed] [Google Scholar]
- Fidler I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst. 1970 Oct;45(4):773–782. [PubMed] [Google Scholar]
- Hanski C., Huhle T., Reutter W. Involvement of plasma membrane dipeptidyl peptidase IV in fibronectin-mediated adhesion of cells on collagen. Biol Chem Hoppe Seyler. 1985 Dec;366(12):1169–1176. doi: 10.1515/bchm3.1985.366.2.1169. [DOI] [PubMed] [Google Scholar]
- Hartel S., Gossrau R., Hanski C., Reutter W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry. 1988;89(2):151–161. doi: 10.1007/BF00489918. [DOI] [PubMed] [Google Scholar]
- Isaacs J. T., Yu G. W., Coffey D. S. The characterization of a newly identified, highly metastatic variety of Dunning R 3327 rat prostatic adenocarcinoma system: the MAT LyLu tumor. Invest Urol. 1981 Jul;19(1):20–23. [PubMed] [Google Scholar]
- Johnson R. C., Augustin-Voss H. G., Zhu D. Z., Pauli B. U. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer Res. 1991 Jan 1;51(1):394–399. [PubMed] [Google Scholar]
- McCarthy S. A., Kuzu I., Gatter K. C., Bicknell R. Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci. 1991 Dec;12(12):462–467. doi: 10.1016/0165-6147(91)90637-8. [DOI] [PubMed] [Google Scholar]
- McCaughan G. W., Wickson J. E., Creswick P. F., Gorrell M. D. Identification of the bile canalicular cell surface molecule GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology. 1990 Apr;11(4):534–544. doi: 10.1002/hep.1840110403. [DOI] [PubMed] [Google Scholar]
- Moldovan N. I., Radu A. N., Simionescu N. Endothelial cell plasma membrane obtained by chemically induced vesiculation. Exp Cell Res. 1987 Jun;170(2):499–510. doi: 10.1016/0014-4827(87)90324-7. [DOI] [PubMed] [Google Scholar]
- Ng R., Kellen J. A., Wong A. C. Plasminogen activators as markers of tumor colonization potential. Invasion Metastasis. 1983;3(4):243–248. [PubMed] [Google Scholar]
- Nicolson G. L., Belloni P. N., Tressler R. J., Dulski K., Inoue T., Cavanaugh P. G. Adhesive, invasive, and growth properties of selected metastatic variants of a murine large-cell lymphoma. Invasion Metastasis. 1989;9(2):102–116. [PubMed] [Google Scholar]
- Nicolson G. L. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta. 1988 Nov 15;948(2):175–224. doi: 10.1016/0304-419x(88)90010-8. [DOI] [PubMed] [Google Scholar]
- Pauli B. U., Augustin-Voss H. G., el-Sabban M. E., Johnson R. C., Hammer D. A. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 1990 Nov;9(3):175–189. doi: 10.1007/BF00046359. [DOI] [PubMed] [Google Scholar]
- Pauli B. U., Kellen J. A., Ng R. Correlation of fibrinolytic activity with invasion and metastasis of R3230 AC rat mammary carcinoma cell lines. Invasion Metastasis. 1987;7(3):158–171. [PubMed] [Google Scholar]
- Pauli B. U., Lee C. L. Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Lab Invest. 1988 Apr;58(4):379–387. [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piazza G. A., Callanan H. M., Mowery J., Hixson D. C. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J. 1989 Aug 15;262(1):327–334. doi: 10.1042/bj2620327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice G. E., Bevilacqua M. P. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science. 1989 Dec 8;246(4935):1303–1306. doi: 10.1126/science.2588007. [DOI] [PubMed] [Google Scholar]
- Roos E., Tulp A., Middelkoop O. P., van de Pavert I. V. Interactions between lymphoid tumor cells and isolated liver endothelial cells. J Natl Cancer Inst. 1984 May;72(5):1173–1180. [PubMed] [Google Scholar]
- Schirrmacher V. Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res. 1985;43:1–73. doi: 10.1016/s0065-230x(08)60942-2. [DOI] [PubMed] [Google Scholar]
- Scott R. E. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science. 1976 Nov 12;194(4266):743–745. doi: 10.1126/science.982044. [DOI] [PubMed] [Google Scholar]
- Sher B. T., Bargatze R., Holzmann B., Gallatin W. M., Matthews D., Wu N., Picker L., Butcher E. C., Weissman I. L. Homing receptors and metastasis. Adv Cancer Res. 1988;51:361–390. doi: 10.1016/s0065-230x(08)60226-2. [DOI] [PubMed] [Google Scholar]
- Soule H. R., Lanford R. E., Butel J. S. Detection of simian virus 40 surface-associated large tumor antigen by enzyme-catalyzed radioiodination. Int J Cancer. 1982 Mar 15;29(3):337–344. doi: 10.1002/ijc.2910290318. [DOI] [PubMed] [Google Scholar]
- Zetter B. R. The cellular basis of site-specific tumor metastasis. N Engl J Med. 1990 Mar 1;322(9):605–612. doi: 10.1056/NEJM199003013220907. [DOI] [PubMed] [Google Scholar]
- Zhu D. Z., Bell R. G. Trichinella spiralis: murine strain variation in response to monoclonally defined, protective, nonstage-specific antigens. Exp Parasitol. 1990 Apr;70(3):330–343. doi: 10.1016/0014-4894(90)90115-s. [DOI] [PubMed] [Google Scholar]
- Zhu D. Z., Cheng C. F., Pauli B. U. Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9568–9572. doi: 10.1073/pnas.88.21.9568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu D. Z., Pauli B. U. Generation of monoclonal antibodies directed against organ-specific endothelial cell surface determinants. J Histochem Cytochem. 1991 Aug;39(8):1137–1142. doi: 10.1177/39.8.1856462. [DOI] [PubMed] [Google Scholar]
- Zhu D., Cheng C. F., Pauli B. U. Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis. J Clin Invest. 1992 Jun;89(6):1718–1724. doi: 10.1172/JCI115773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu D., Lefkovits I., Köhler G. Frequency of expressed immunoglobulin light chain genes in lipopolysaccharide-stimulated BALB/c spleen cells. J Exp Med. 1984 Oct 1;160(4):971–986. doi: 10.1084/jem.160.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]