Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Mar 1;120(5):1147–1157. doi: 10.1083/jcb.120.5.1147

Calcium pump of the plasma membrane is localized in caveolae

PMCID: PMC2119723  PMID: 8382206

Abstract

The Ca2+ pump in the plasma membrane plays a key role in the fine control of the cytoplasmic free Ca2+ concentration. In the present study, its subcellular localization was examined with immunocytochemical techniques using a specific antibody generated against the erythrocyte membrane Ca2+ pump ATPase. By immunofluorescence microscopy of cultured cells, the labeling with the antibody was seen as numerous small dots, often distributed in linear arrays or along cell edges. Immunogold EM of cryosections revealed that the dots correspond to caveolae, or smooth invaginations of the plasma membrane. The same technique applied to mouse tissues in vivo showed that the Ca2+ pump is similarly localized in caveolae of endothelial cells, smooth muscle cells, cardiac muscle cells, epidermal keratinocytes and mesothelial cells. By quantitative analysis of the immunogold labeling, the Ca2+ pump in capillary endothelial cells and visceral smooth muscle cells was found to be concentrated 18-25-fold in the caveolar membrane compared with the noncaveolar portion of the plasma membrane. In renal tubular and small intestinal epithelial cells, which have been known to contain the Ca2+ pump but do not have many caveolae, most of the labeling was randomly distributed in the basolateral plasma membrane, although caveolae were also positively labeled. The results demonstrate that the caveolae in various cells has the plasmalemmal Ca2+ pump as a common constituent. In conjunction with our recent finding that an inositol 1,4,5-trisphosphate receptor-like protein exists in the caveolae (Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa. 1992. J. Cell Biol. 119:1507-1513), it is inferred that the smooth plasmalemmal invagination is an apparatus specialized for Ca2+ intake and extrusion from the cytoplasm.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Kamen B. A., Rothberg K. G., Lacey S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. doi: 10.1126/science.1310359. [DOI] [PubMed] [Google Scholar]
  2. Borke J. L., Caride A., Verma A. K., Penniston J. T., Kumar R. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules. Am J Physiol. 1989 Nov;257(5 Pt 2):F842–F849. doi: 10.1152/ajprenal.1989.257.5.F842. [DOI] [PubMed] [Google Scholar]
  3. Bundgaard M., Hagman P., Crone C. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res. 1983 May;25(3):358–368. doi: 10.1016/0026-2862(83)90025-0. [DOI] [PubMed] [Google Scholar]
  4. Bundgaard M. The three-dimensional organization of smooth endoplasmic reticulum in capillary endothelia: its possible role in regulation of free cytosolic calcium. J Struct Biol. 1991 Aug;107(1):76–85. doi: 10.1016/1047-8477(91)90033-s. [DOI] [PubMed] [Google Scholar]
  5. Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  7. Crone C. Modulation of solute permeability in microvascular endothelium. Fed Proc. 1986 Feb;45(2):77–83. [PubMed] [Google Scholar]
  8. Davis F. B., Davis P. J., Lawrence W. D., Blas S. D. Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca(2+)-ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J. 1991 Nov;5(14):2992–2995. doi: 10.1096/fasebj.5.14.1836436. [DOI] [PubMed] [Google Scholar]
  9. Frank J. S., Mottino G., Reid D., Molday R. S., Philipson K. D. Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol. 1992 Apr;117(2):337–345. doi: 10.1083/jcb.117.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frøkjaer-Jensen J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res. 1980 Oct;73(1):9–20. doi: 10.1016/0022-5320(80)90111-2. [DOI] [PubMed] [Google Scholar]
  11. Fujimoto T., Lee K., Miwa S., Ogawa K. Immunocytochemical localization of fodrin and ankyrin in bovine chromaffin cells in vitro. J Histochem Cytochem. 1991 Nov;39(11):1485–1493. doi: 10.1177/39.11.1833445. [DOI] [PubMed] [Google Scholar]
  12. Fujimoto T., Nakade S., Miyawaki A., Mikoshiba K., Ogawa K. Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol. 1992 Dec;119(6):1507–1513. doi: 10.1083/jcb.119.6.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  14. Ghitescu L., Fixman A., Simionescu M., Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol. 1986 Apr;102(4):1304–1311. doi: 10.1083/jcb.102.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg R. I., Smith R. M., Jarett L. Insulin and alpha 2-macroglobulin-methylamine undergo endocytosis by different mechanisms in rat adipocytes: I. Comparison of cell surface events. J Cell Physiol. 1987 Nov;133(2):203–212. doi: 10.1002/jcp.1041330202. [DOI] [PubMed] [Google Scholar]
  16. Goto Y., Yoshikane H., Honda M., Morioka S., Yamori Y., Moriyama K. Three-dimensional observation on sarcoplasmic reticulum and caveolae in myocardium of spontaneously hypertensive rats. J Submicrosc Cytol Pathol. 1990 Oct;22(4):535–542. [PubMed] [Google Scholar]
  17. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  18. Hazama F., Ozaki T., Amano S. Scanning electron microscopic study of endothelial cells of cerebral arteries from spontaneously hypertensive rats. Stroke. 1979 May-Jun;10(3):245–252. doi: 10.1161/01.str.10.3.245. [DOI] [PubMed] [Google Scholar]
  19. Izumi T., Shibata Y., Yamamoto T. The cytoplasmic surface structures of uncoated vesicles in various tissues of rat as revealed by quick-freeze, deep-etching replicas. J Electron Microsc (Tokyo) 1989;38(1):47–53. [PubMed] [Google Scholar]
  20. Kelly R. B. Quantized secretion of hormones. Curr Biol. 1992 Jul;2(7):367–369. doi: 10.1016/0960-9822(92)90069-m. [DOI] [PubMed] [Google Scholar]
  21. Kessler F., Bennardini F., Bachs O., Serratosa J., James P., Caride A. J., Gazzotti P., Penniston J. T., Carafoli E. Partial purification and characterization of the Ca2(+)-pumping ATPase of the liver plasma membrane. J Biol Chem. 1990 Sep 15;265(26):16012–16019. [PubMed] [Google Scholar]
  22. Kumar R., Penniston J. T. Widespread distribution of calcium pump in calcium-transporting tissues. Immunohistochemical studies. Contrib Nephrol. 1991;91:21–25. doi: 10.1159/000420153. [DOI] [PubMed] [Google Scholar]
  23. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  24. Kuo T. H. Guanine nucleotide-, and inositol triphosphate-induced inhibition of the CA2+ pump in rat heart sarcolemmal vesicles. Biochem Biophys Res Commun. 1988 May 16;152(3):1111–1116. doi: 10.1016/s0006-291x(88)80399-1. [DOI] [PubMed] [Google Scholar]
  25. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Masson-Pévet M., Gros D., Besselsen E. The caveolae in rabbit sinus node and atrium. Cell Tissue Res. 1980;208(2):183–196. doi: 10.1007/BF00234869. [DOI] [PubMed] [Google Scholar]
  27. Meldolesi J., Madeddu L., Pozzan T. Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. Biochim Biophys Acta. 1990 Nov 12;1055(2):130–140. doi: 10.1016/0167-4889(90)90113-r. [DOI] [PubMed] [Google Scholar]
  28. Michalak M., Fliegel L., Wlasichuk K. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles. J Biol Chem. 1990 Apr 5;265(10):5869–5874. [PubMed] [Google Scholar]
  29. Milici A. J., Watrous N. E., Stukenbrok H., Palade G. E. Transcytosis of albumin in capillary endothelium. J Cell Biol. 1987 Dec;105(6 Pt 1):2603–2612. doi: 10.1083/jcb.105.6.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nasu F., Inomata K. Ultracytochemical demonstration of Ca2(+)-ATPase activity in the rat saphenous artery and its innervated nerve terminal. J Electron Microsc (Tokyo) 1990;39(6):487–491. [PubMed] [Google Scholar]
  31. Nellans H. N., Popovitch J. E. Calmodulin-regulated, ATP-driven calcium transport by basolateral membranes of rat small intestine. J Biol Chem. 1981 Oct 10;256(19):9932–9936. [PubMed] [Google Scholar]
  32. Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
  33. Ogurusu T., Wakabayashi S., Furukawa K., Tawada-Iwata Y., Imagawa T., Shigekawa M. Protein kinase-dependent phosphorylation of cardiac sarcolemmal Ca2(+)-ATPase, as studied with a specific monoclonal antibody. J Biochem. 1990 Aug;108(2):222–229. doi: 10.1093/oxfordjournals.jbchem.a123184. [DOI] [PubMed] [Google Scholar]
  34. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  35. Orlov S. N., Pokudin N. I., Postnov YuV Calmodulin-dependent Ca2+ transport in erythrocytes of spontaneously hypertensive rats. Pflugers Arch. 1983 Apr;397(1):54–56. doi: 10.1007/BF00585168. [DOI] [PubMed] [Google Scholar]
  36. Peters K. R., Carley W. W., Palade G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol. 1985 Dec;101(6):2233–2238. doi: 10.1083/jcb.101.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Postnov Y. V., Orlov S. N. Evidence of altered calcium accumulation and calcium binding by the membranes of adipocytes in spontaneously hypertensive rats. Pflugers Arch. 1980 May;385(1):85–89. doi: 10.1007/BF00583919. [DOI] [PubMed] [Google Scholar]
  38. Resink T. J., Tkachuk V. A., Erne P., Bühler F. R. Platelet membrane calmodulin-stimulated calcium-adenosine triphosphatase. Altered activity in essential hypertension. Hypertension. 1986 Feb;8(2):159–166. doi: 10.1161/01.hyp.8.2.159. [DOI] [PubMed] [Google Scholar]
  39. Restrepo D., Miyamoto T., Bryant B. P., Teeter J. H. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science. 1990 Sep 7;249(4973):1166–1168. doi: 10.1126/science.2168580. [DOI] [PubMed] [Google Scholar]
  40. Ronner P., Gazzotti P., Carafoli E. A lipid requirement for the (Ca2+ + Mg2+)-activated ATPase of erythrocyte membranes. Arch Biochem Biophys. 1977 Mar;179(2):578–583. doi: 10.1016/0003-9861(77)90146-1. [DOI] [PubMed] [Google Scholar]
  41. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  42. Rothberg K. G., Ying Y. S., Kolhouse J. F., Kamen B. A., Anderson R. G. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol. 1990 Mar;110(3):637–649. doi: 10.1083/jcb.110.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Severs N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci. 1988 Jul;90(Pt 3):341–348. doi: 10.1242/jcs.90.3.341. [DOI] [PubMed] [Google Scholar]
  44. Simionescu N. Cellular aspects of transcapillary exchange. Physiol Rev. 1983 Oct;63(4):1536–1579. doi: 10.1152/physrev.1983.63.4.1536. [DOI] [PubMed] [Google Scholar]
  45. Somlyo A. P., Devine C. E., Somlyo A. V., North S. R. Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solutions. J Cell Biol. 1971 Dec;51(3):722–741. doi: 10.1083/jcb.51.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Strehler E. E. Recent advances in the molecular characterization of plasma membrane Ca2+ pumps. J Membr Biol. 1991 Feb;120(1):1–15. doi: 10.1007/BF01868586. [DOI] [PubMed] [Google Scholar]
  47. Suzuki S., Sugi H. Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studied by the pyroantimonate method. Cell Tissue Res. 1989 Aug;257(2):237–246. doi: 10.1007/BF00261826. [DOI] [PubMed] [Google Scholar]
  48. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  49. Wang K. K., Villalobo A., Roufogalis B. D. The plasma membrane calcium pump: a multiregulated transporter. Trends Cell Biol. 1992 Feb;2(2):46–52. doi: 10.1016/0962-8924(92)90162-g. [DOI] [PubMed] [Google Scholar]
  50. Wasserman R. H., Smith C. A., Smith C. M., Brindak M. E., Fullmer C. S., Krook L., Penniston J. T., Kumar R. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen. Histochemistry. 1991;96(5):413–418. doi: 10.1007/BF00315999. [DOI] [PubMed] [Google Scholar]
  51. YAMADA E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955 Sep 25;1(5):445–458. doi: 10.1083/jcb.1.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES