Abstract
Calcifying cartilages show a restricted expression of tissue transglutaminase. Immunostaining of newborn rat paw bones reveals expression only in the epiphyseal growth plate. Tissue transglutaminase appears first intracellularly in the proliferation/maturation zone and remains until calcification of the tissue in the lower hypertrophic zone. Externalization occurs before mineralization. Subsequently, the enzyme is present in the interterritorial matrix during provisional calcification and in the calcified cartilage cores of bone trabeculae. In trachea, mineralization occurring with maturation in the center of the cartilage is accompanied by expression of tissue transglutaminase at the border of the hydroxyapatite deposits. Transglutaminase activity also shows a restricted distribution in cartilage, similar to the one observed for tissue transglutaminase protein. Analysis of tissue homogenates showed that the enzyme is present in growth plate cartilage, but not in articular cartilage, and recognizes a limited set of substrate proteins. Osteonectin is coexpressed with tissue transglutaminase both in the growth plate and in calcifying tracheal cartilage and is a specific substrate for tissue transglutaminase in vitro. Tissue transglutaminase expression in skeletal tissues is strictly regulated, correlates with chondrocyte differentiation, precedes cartilage calcification, and could lead to cross-linking of the mineralizing matrix.
Full Text
The Full Text of this article is available as a PDF (8.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achyuthan K. E., Mary A., Greenberg C. S. The binding sites on fibrin(ogen) for guinea pig liver transglutaminase are similar to those of blood coagulation factor XIII. Characterization of the binding of liver transglutaminase to fibrin. J Biol Chem. 1988 Oct 5;263(28):14296–14301. [PubMed] [Google Scholar]
- Aeschlimann D., Paulsson M. Cross-linking of laminin-nidogen complexes by tissue transglutaminase. A novel mechanism for basement membrane stabilization. J Biol Chem. 1991 Aug 15;266(23):15308–15317. [PubMed] [Google Scholar]
- Aeschlimann D., Paulsson M., Mann K. Identification of Gln726 in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin-nidogen complexes. J Biol Chem. 1992 Jun 5;267(16):11316–11321. [PubMed] [Google Scholar]
- Birckbichler P. J., Orr G. R., Carter H. A., Patterson M. K., Jr Catalytic formation of epsilon-(gamma-glutamyl)lysine in guinea pig liver transglutaminase. Biochem Biophys Res Commun. 1977 Sep 9;78(1):1–7. doi: 10.1016/0006-291x(77)91213-x. [DOI] [PubMed] [Google Scholar]
- Bolander M. E., Young M. F., Fisher L. W., Yamada Y., Termine J. D. Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (ovomucoid). Proc Natl Acad Sci U S A. 1988 May;85(9):2919–2923. doi: 10.1073/pnas.85.9.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonucci E., Cuicchio M., Dearden L. C. Investigations of ageing in costal and tracheal cartilage of rats. Z Zellforsch Mikrosk Anat. 1974 Mar 21;147(4):505–527. doi: 10.1007/BF00307252. [DOI] [PubMed] [Google Scholar]
- Bowness J. M., Folk J. E., Timpl R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem. 1987 Jan 25;262(3):1022–1024. [PubMed] [Google Scholar]
- Connellan J. M., Chung S. I., Whetzel N. K., Bradley L. M., Folk J. E. Structural properties of guinea pig liver transglutaminase. J Biol Chem. 1971 Feb 25;246(4):1093–1098. [PubMed] [Google Scholar]
- Dziadek M., Paulsson M., Aumailley M., Timpl R. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur J Biochem. 1986 Dec 1;161(2):455–464. doi: 10.1111/j.1432-1033.1986.tb10466.x. [DOI] [PubMed] [Google Scholar]
- Engel J., Taylor W., Paulsson M., Sage H., Hogan B. Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry. 1987 Nov 3;26(22):6958–6965. doi: 10.1021/bi00396a015. [DOI] [PubMed] [Google Scholar]
- Fesus L., Davies P. J., Piacentini M. Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol. 1991 Dec;56(2):170–177. [PubMed] [Google Scholar]
- Fesus L., Metsis M. L., Muszbek L., Koteliansky V. E. Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments. Eur J Biochem. 1986 Jan 15;154(2):371–374. doi: 10.1111/j.1432-1033.1986.tb09407.x. [DOI] [PubMed] [Google Scholar]
- Fisher L. W., Hawkins G. R., Tuross N., Termine J. D. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987 Jul 15;262(20):9702–9708. [PubMed] [Google Scholar]
- Greenberg C. S., Birckbichler P. J., Rice R. H. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 1991 Dec;5(15):3071–3077. doi: 10.1096/fasebj.5.15.1683845. [DOI] [PubMed] [Google Scholar]
- Heinegård D., Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989 Jul;3(9):2042–2051. doi: 10.1096/fasebj.3.9.2663581. [DOI] [PubMed] [Google Scholar]
- Hinek A., Reiner A., Poole A. R. The calcification of cartilage matrix in chondrocyte culture: studies of the C-propeptide of type II collagen (chondrocalcin). J Cell Biol. 1987 May;104(5):1435–1441. doi: 10.1083/jcb.104.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hohl D., Mehrel T., Lichti U., Turner M. L., Roop D. R., Steinert P. M. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem. 1991 Apr 5;266(10):6626–6636. [PubMed] [Google Scholar]
- Hunziker E. B., Schenk R. K. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J Physiol. 1989 Jul;414:55–71. doi: 10.1113/jphysiol.1989.sp017676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichinose A., Bottenus R. E., Davie E. W. Structure of transglutaminases. J Biol Chem. 1990 Aug 15;265(23):13411–13414. [PubMed] [Google Scholar]
- Keene D. R., Sakai L. Y., Burgeson R. E. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J Histochem Cytochem. 1991 Jan;39(1):59–69. doi: 10.1177/39.1.1983874. [DOI] [PubMed] [Google Scholar]
- Kinoshita T., Iinuma F., Tsuji A. Fluorescent labeling of proteins and a plasma membrane using cycloheptaamylose-dansyl chloride complex. Anal Biochem. 1974 Oct;61(2):632–637. doi: 10.1016/0003-2697(74)90431-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
- Mason I. J., Taylor A., Williams J. G., Sage H., Hogan B. L. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43,000. EMBO J. 1986 Jul;5(7):1465–1472. doi: 10.1002/j.1460-2075.1986.tb04383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurer P., Mayer U., Bruch M., Jenö P., Mann K., Landwehr R., Engel J., Timpl R. High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur J Biochem. 1992 Apr 1;205(1):233–240. doi: 10.1111/j.1432-1033.1992.tb16773.x. [DOI] [PubMed] [Google Scholar]
- Metsäranta M., Young M. F., Sandberg M., Termine J., Vuorio E. Localization of osteonectin expression in human fetal skeletal tissues by in situ hybridization. Calcif Tissue Int. 1989 Sep;45(3):146–152. doi: 10.1007/BF02556057. [DOI] [PubMed] [Google Scholar]
- Miller E. J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains. Biochemistry. 1971 Apr 27;10(9):1652–1659. doi: 10.1021/bi00785a024. [DOI] [PubMed] [Google Scholar]
- Nischt R., Pottgiesser J., Krieg T., Mayer U., Aumailley M., Timpl R. Recombinant expression and properties of the human calcium-binding extracellular matrix protein BM-40. Eur J Biochem. 1991 Sep 1;200(2):529–536. doi: 10.1111/j.1432-1033.1991.tb16214.x. [DOI] [PubMed] [Google Scholar]
- Nomura S., Wills A. J., Edwards D. R., Heath J. K., Hogan B. L. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol. 1988 Feb;106(2):441–450. doi: 10.1083/jcb.106.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince C. W., Dickie D., Krumdieck C. L. Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1205–1210. doi: 10.1016/0006-291x(91)90669-x. [DOI] [PubMed] [Google Scholar]
- Sane D. C., Moser T. L., Pippen A. M., Parker C. J., Achyuthan K. E., Greenberg C. S. Vitronectin is a substrate for transglutaminases. Biochem Biophys Res Commun. 1988 Nov 30;157(1):115–120. doi: 10.1016/s0006-291x(88)80020-2. [DOI] [PubMed] [Google Scholar]
- Schmid T. M., Linsenmayer T. F. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985 Feb;107(2):373–381. doi: 10.1016/0012-1606(85)90319-7. [DOI] [PubMed] [Google Scholar]
- Shainoff J. R., Urbanic D. A., DiBello P. M. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase. Identification of a rapid mode of hybrid alpha-/gamma-chain cross-linking that is promoted by the gamma-chain cross-linking. J Biol Chem. 1991 Apr 5;266(10):6429–6437. [PubMed] [Google Scholar]
- Simon M., Green H. The glutamine residues reactive in transglutaminase-catalyzed cross-linking of involucrin. J Biol Chem. 1988 Dec 5;263(34):18093–18098. [PubMed] [Google Scholar]
- Skorstengaard K., Halkier T., Højrup P., Mosher D. Sequence location of a putative transglutaminase cross-linking site in human vitronectin. FEBS Lett. 1990 Mar 26;262(2):269–274. doi: 10.1016/0014-5793(90)80208-z. [DOI] [PubMed] [Google Scholar]
- Termine J. D., Belcourt A. B., Conn K. M., Kleinman H. K. Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem. 1981 Oct 25;256(20):10403–10408. [PubMed] [Google Scholar]
- Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
- Thacher S. M., Rice R. H. Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell. 1985 Mar;40(3):685–695. doi: 10.1016/0092-8674(85)90217-x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Upchurch H. F., Conway E., Patterson M. K., Jr, Maxwell M. D. Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. J Cell Physiol. 1991 Dec;149(3):375–382. doi: 10.1002/jcp.1041490304. [DOI] [PubMed] [Google Scholar]
- Weinberg J. B., Pippen A. M., Greenberg C. S. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 1991 Aug;34(8):996–1005. doi: 10.1002/art.1780340809. [DOI] [PubMed] [Google Scholar]
- Wiebe R. I., Tarr A. H., Bowness J. M. Increased transglutaminase in the aortas of cholesterol-fed rabbits: occurrence of buffer soluble and insoluble forms and an inhibitor. Biochem Cell Biol. 1991 Dec;69(12):821–827. doi: 10.1139/o91-122. [DOI] [PubMed] [Google Scholar]
- Wu L. N., Genge B. R., Wuthier R. E. Association between proteoglycans and matrix vesicles in the extracellular matrix of growth plate cartilage. J Biol Chem. 1991 Jan 15;266(2):1187–1194. [PubMed] [Google Scholar]