Abstract
During the first cell cycle of the ascidian egg, two phases of ooplasmic segregation create distinct cytoplasmic domains that are crucial for later development. We recently defined a domain enriched in ER in the vegetal region of Phallusia mammillata eggs. To explore the possible physiological and developmental function of this ER domain, we here investigate its organization and fate by labeling the ER network in vivo with DiIC16(3), and observing its distribution before and after fertilization in the living egg. In unfertilized eggs, the ER-rich vegetal cortex is overlaid by the ER-poor but mitochondria-rich subcortical myoplasm. Fertilization results in striking rearrangements of the ER network. First, ER accumulates at the vegetal-contraction pole as a thick layer between the plasma membrane and the myoplasm. This accompanies the relocation of the myoplasm toward that region during the first phase of ooplasmic segregation. In other parts of the cytoplasm, ER becomes progressively redistributed into ER-rich and ER- poor microdomains. As the sperm aster grows, ER accumulates in its centrosomal area and along its astral rays. During the second phase of ooplasmic segregation, which takes place once meiosis is completed, the concentrated ER domain at the vegetal-contraction pole moves with the sperm aster and the bulk of the myoplasm toward the future posterior side of the embryo. These results show that after fertilization, ER first accumulates in the vegetal area from which repetitive calcium waves are known to originate (Speksnijder, J. E. 1992. Dev. Biol. 153:259-271). This ER domain subsequently colocalizes with the myoplasm to the presumptive primary muscle cell region.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan V. J., Vale R. D. Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J Cell Biol. 1991 Apr;113(2):347–359. doi: 10.1083/jcb.113.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busa W. B., Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985 Apr;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campanella C., Andreuccetti P., Taddei C., Talevi R. The modifications of cortical endoplasmic reticulum during in vitro maturation of Xenopus laevis oocytes and its involvement in cortical granule exocytosis. J Exp Zool. 1984 Feb;229(2):283–293. doi: 10.1002/jez.1402290214. [DOI] [PubMed] [Google Scholar]
- Campanella C., Talevi R., Kline D., Nuccitelli R. The cortical reaction in the egg of Discoglossus pictus: a study of the changes in the endoplasmic reticulum at activation. Dev Biol. 1988 Nov;130(1):108–119. doi: 10.1016/0012-1606(88)90418-6. [DOI] [PubMed] [Google Scholar]
- Dabora S. L., Sheetz M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
- Gill S. R., Schroer T. A., Szilak I., Steuer E. R., Sheetz M. P., Cleveland D. W. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol. 1991 Dec;115(6):1639–1650. doi: 10.1083/jcb.115.6.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson J. H., Begg D. A., Beaulieu S. M., Fishkind D. J., Bonder E. M., Terasaki M., Lebeche D., Kaminer B. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J Cell Biol. 1989 Jul;109(1):149–161. doi: 10.1083/jcb.109.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houliston E., Elinson R. P. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs. J Cell Biol. 1991 Sep;114(5):1017–1028. doi: 10.1083/jcb.114.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imhof B. A., Ruiz P., Hesse B., Palacios R., Dunon D. EA-1, a novel adhesion molecule involved in the homing of progenitor T lymphocytes to the thymus. J Cell Biol. 1991 Sep;114(5):1069–1078. doi: 10.1083/jcb.114.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F. The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9883–9887. doi: 10.1073/pnas.88.21.9883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffery W. R. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo. Dev Biol. 1990 Sep;141(1):141–148. doi: 10.1016/0012-1606(90)90109-v. [DOI] [PubMed] [Google Scholar]
- Jeffery W. R. Ultraviolet irradiation during ooplasmic segregation prevents gastrulation, sensory cell induction, and axis formation in the ascidian embryo. Dev Biol. 1990 Aug;140(2):388–400. doi: 10.1016/0012-1606(90)90088-z. [DOI] [PubMed] [Google Scholar]
- Kachar B., Reese T. S. The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol. 1988 May;106(5):1545–1552. doi: 10.1083/jcb.106.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiehart D. P. Microinjection of echinoderm eggs: apparatus and procedures. Methods Cell Biol. 1982;25(Pt B):13–31. doi: 10.1016/s0091-679x(08)61418-1. [DOI] [PubMed] [Google Scholar]
- Kline D., Nuccitelli R. The wave of activation current in the Xenopus egg. Dev Biol. 1985 Oct;111(2):471–487. doi: 10.1016/0012-1606(85)90499-3. [DOI] [PubMed] [Google Scholar]
- Knebel W., Quader H., Schnepf E. Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short- and long-term observations with a confocal laser scanning microscope. Eur J Cell Biol. 1990 Aug;52(2):328–340. [PubMed] [Google Scholar]
- Lee C., Chen L. B. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 1988 Jul 1;54(1):37–46. doi: 10.1016/0092-8674(88)90177-8. [DOI] [PubMed] [Google Scholar]
- Lee C., Ferguson M., Chen L. B. Construction of the endoplasmic reticulum. J Cell Biol. 1989 Nov;109(5):2045–2055. doi: 10.1083/jcb.109.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberdorf J. A., Head J. F., Kaminer B. Calcium uptake and release by isolated cortices and microsomes from the unfertilized egg of the sea urchin Strongylocentrotus droebachiensis. J Cell Biol. 1986 Jun;102(6):2205–2210. doi: 10.1083/jcb.102.6.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberdorf J. A., Lebeche D., Head J. F., Kaminer B. Identification of a calsequestrin-like protein from sea urchin eggs. J Biol Chem. 1988 May 15;263(14):6806–6809. [PubMed] [Google Scholar]
- Payan P., Girard J. P., Sardet C., Whitaker M., Zimmerberg J. Uptake and release of calcium by isolated egg cortices of the sea urchin Paracentrotus lividus. Biol Cell. 1986;58(1):87–90. doi: 10.1111/j.1768-322x.1986.tb00490.x. [DOI] [PubMed] [Google Scholar]
- Sardet C., Chang P. The egg cortex: from maturation through fertilization. Cell Differ. 1987 Jun;21(1):1–19. doi: 10.1016/0045-6039(87)90443-x. [DOI] [PubMed] [Google Scholar]
- Sardet C., Speksnijder J., Inoue S., Jaffe L. Fertilization and ooplasmic movements in the ascidian egg. Development. 1989 Feb;105(2):237–249. doi: 10.1242/dev.105.2.237. [DOI] [PubMed] [Google Scholar]
- Sardet C., Speksnijder J., Terasaki M., Chang P. Polarity of the ascidian egg cortex before fertilization. Development. 1992 May;115(1):221–237. doi: 10.1242/dev.115.1.221. [DOI] [PubMed] [Google Scholar]
- Sardet C. The ultrastructure of the sea urchin egg cortex isolated before and after fertilization. Dev Biol. 1984 Sep;105(1):196–210. doi: 10.1016/0012-1606(84)90275-6. [DOI] [PubMed] [Google Scholar]
- Sawada T., Schatten G. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis. Dev Biol. 1989 Apr;132(2):331–342. doi: 10.1016/0012-1606(89)90230-3. [DOI] [PubMed] [Google Scholar]
- Sawada T., Schatten G. Microtubules in ascidian eggs during meiosis, fertilization, and mitosis. Cell Motil Cytoskeleton. 1988;9(3):219–230. doi: 10.1002/cm.970090304. [DOI] [PubMed] [Google Scholar]
- Schroer T. A., Sheetz M. P. Two activators of microtubule-based vesicle transport. J Cell Biol. 1991 Dec;115(5):1309–1318. doi: 10.1083/jcb.115.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speksnijder J. E., Jaffe L. F., Sardet C. Polarity of sperm entry in the ascidian egg. Dev Biol. 1989 May;133(1):180–184. doi: 10.1016/0012-1606(89)90309-6. [DOI] [PubMed] [Google Scholar]
- Speksnijder J. E., Sardet C., Jaffe L. F. Periodic calcium waves cross ascidian eggs after fertilization. Dev Biol. 1990 Nov;142(1):246–249. doi: 10.1016/0012-1606(90)90168-i. [DOI] [PubMed] [Google Scholar]
- Speksnijder J. E., Sardet C., Jaffe L. F. The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation. J Cell Biol. 1990 May;110(5):1589–1598. doi: 10.1083/jcb.110.5.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speksnijder J. E. The repetitive calcium waves in the fertilized ascidian egg are initiated near the vegetal pole by a cortical pacemaker. Dev Biol. 1992 Oct;153(2):259–271. doi: 10.1016/0012-1606(92)90111-s. [DOI] [PubMed] [Google Scholar]
- Swalla B. J., Badgett M. R., Jeffery W. R. Identification of a cytoskeletal protein localized in the myoplasm of ascidian eggs: localization is modified during anural development. Development. 1991 Feb;111(2):425–436. doi: 10.1242/dev.111.2.425. [DOI] [PubMed] [Google Scholar]
- Terasaki M., Chen L. B., Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol. 1986 Oct;103(4):1557–1568. doi: 10.1083/jcb.103.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaki M. Fluorescent labeling of endoplasmic reticulum. Methods Cell Biol. 1989;29:125–135. doi: 10.1016/s0091-679x(08)60191-0. [DOI] [PubMed] [Google Scholar]
- Terasaki M., Henson J., Begg D., Kaminer B., Sardet C. Characterization of sea urchin egg endoplasmic reticulum in cortical preparations. Dev Biol. 1991 Nov;148(1):398–401. doi: 10.1016/0012-1606(91)90348-7. [DOI] [PubMed] [Google Scholar]
- Terasaki M. Recent progress on structural interactions of the endoplasmic reticulum. Cell Motil Cytoskeleton. 1990;15(2):71–75. doi: 10.1002/cm.970150203. [DOI] [PubMed] [Google Scholar]
- Terasaki M., Sardet C. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J Cell Biol. 1991 Nov;115(4):1031–1037. doi: 10.1083/jcb.115.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaki M., Song J., Wong J. R., Weiss M. J., Chen L. B. Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell. 1984 Aug;38(1):101–108. doi: 10.1016/0092-8674(84)90530-0. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Hotani H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol. 1988 Dec;107(6 Pt 1):2233–2241. doi: 10.1083/jcb.107.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee R. B., Shpetner H. S. Motor proteins of cytoplasmic microtubules. Annu Rev Biochem. 1990;59:909–932. doi: 10.1146/annurev.bi.59.070190.004401. [DOI] [PubMed] [Google Scholar]
- Vallee R. Cytoplasmic dynein: advances in microtubule-based motility. Trends Cell Biol. 1991 Jul;1(1):25–29. doi: 10.1016/0962-8924(91)90066-i. [DOI] [PubMed] [Google Scholar]
- Venuti J. M., Jeffery W. R. Cell lineage and determination of cell fate in ascidian embryos. Int J Dev Biol. 1989 Jun;33(2):197–212. [PubMed] [Google Scholar]
- Vincent J. P., Scharf S. R., Gerhart J. C. Subcortical rotation in Xenopus eggs: a preliminary study of its mechanochemical basis. Cell Motil Cytoskeleton. 1987;8(2):143–154. doi: 10.1002/cm.970080206. [DOI] [PubMed] [Google Scholar]
- Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990 Apr;108(4):525–542. doi: 10.1242/dev.108.4.525. [DOI] [PubMed] [Google Scholar]
- White J. G., Amos W. B., Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol. 1987 Jul;105(1):41–48. doi: 10.1083/jcb.105.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]