Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Apr 1;121(1):193–199. doi: 10.1083/jcb.121.1.193

Parallel regulation of procollagen I and colligin, a collagen-binding protein and a member of the serine protease inhibitor family

PMCID: PMC2119767  PMID: 8458868

Abstract

A potential regulatory linkage between the biosynthesis of colligin, a collagen-binding protein of the ER, and procollagen I was examined under a variety of experimental conditions. Cell lines which did not produce a significant amount of procollagen I mRNA also lacked the capacity to produce colligin mRNA. Anchorage-dependent cell lines like L6 myoblasts and normal rat kidney fibroblasts produced both colligin and procollagen I mRNA, but the level of both was concurrently reduced considerably in their ras-transformed counterparts. Similarly, during the differentiation of L6 myoblasts, levels of both colligin and procollagen declined together. Treatment of myoblasts by dexamethasone or EGF led to a decrease in the steady-state levels of procollagen I mRNA, and this was, again, accompanied by a decrease in colligin mRNA synthesis. On the other hand, when the rate of procollagen I synthesis was stimulated by treatment of myoblasts with TGF beta, it led to the concurrent augmentation of both the mRNA and protein levels of colligin. A linkage between the regulation of synthesis of procollagen I and colligin thus seems to exist. The only exception to this generalization is provided by the heat induction behavior of the two proteins. Treatment of myoblasts for a very short period leads to an increase in the synthesis of both the mRNA and protein levels of colligin. This, however, is not accompanied by a change in the mRNA levels of procollagen I. These studies establish that colligin and procollagen are generally tightly co-regulated except after heat shock, suggesting an important functional linkage.

Full Text

The Full Text of this article is available as a PDF (907.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen P. A., Georg B., Lund L. R., Riccio A., Stacey S. N. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol. 1990 Jan 2;68(1):1–19. doi: 10.1016/0303-7207(90)90164-4. [DOI] [PubMed] [Google Scholar]
  2. Avvedimento E., Yamada Y., Lovelace E., Vogeli G., de Crombrugghe B., Pastan I. Decrease in the levels of nuclear RNA precursors for alpha 2 collagen in Rous sarcoma virus transformed fibroblasts. Nucleic Acids Res. 1981 Mar 11;9(5):1123–1131. doi: 10.1093/nar/9.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bateman J. F., Peterkofsky B. Mechanisms of Kirsten murine sarcoma virus transformation-induced changes in the collagen phenotype and synthetic rate of BALB 3T3 cells. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6028–6032. doi: 10.1073/pnas.78.10.6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell J. C., Jardine K., McBurney M. W. Lineage-specific transformation after differentiation of multipotential murine stem cells containing a human oncogene. Mol Cell Biol. 1986 Feb;6(2):617–625. doi: 10.1128/mcb.6.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cates G. A., Brickenden A. M., Sanwal B. D. Possible involvement of a cell surface glycoprotein in the differentiation of skeletal myoblasts. J Biol Chem. 1984 Feb 25;259(4):2646–2650. [PubMed] [Google Scholar]
  6. Cates G. A., Litchfield D. W., Narindrasorasak S., Nandan D., Ball E. H., Sanwal B. D. Phosphorylation of a gelatin-binding protein from L6 myoblasts by protein kinase C. FEBS Lett. 1987 Jun 29;218(2):195–199. doi: 10.1016/0014-5793(87)81045-1. [DOI] [PubMed] [Google Scholar]
  7. Cates G. A., Nandan D., Brickenden A. M., Sanwal B. D. Differentiation defective mutants of skeletal myoblasts altered in a gelatin-binding glycoprotein. Biochem Cell Biol. 1987 Sep;65(9):767–775. doi: 10.1139/o87-100. [DOI] [PubMed] [Google Scholar]
  8. Clarke E. P., Cates G. A., Ball E. H., Sanwal B. D. A collagen-binding protein in the endoplasmic reticulum of myoblasts exhibits relationship with serine protease inhibitors. J Biol Chem. 1991 Sep 15;266(26):17230–17235. [PubMed] [Google Scholar]
  9. Clarke E. P., Sanwal B. D. Cloning of a human collagen-binding protein, and its homology with rat gp46, chick hsp47 and mouse J6 proteins. Biochim Biophys Acta. 1992 Jan 6;1129(2):246–248. doi: 10.1016/0167-4781(92)90498-o. [DOI] [PubMed] [Google Scholar]
  10. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  11. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  12. Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  14. Heino J., Massagué J. Cell adhesion to collagen and decreased myogenic gene expression implicated in the control of myogenesis by transforming growth factor beta. J Biol Chem. 1990 Jun 25;265(18):10181–10184. [PubMed] [Google Scholar]
  15. Hirayoshi K., Kudo H., Takechi H., Nakai A., Iwamatsu A., Yamada K. M., Nagata K. HSP47: a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol. 1991 Aug;11(8):4036–4044. doi: 10.1128/mcb.11.8.4036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hämäläinen L., Oikarinen J., Kivirikko K. I. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J Biol Chem. 1985 Jan 25;260(2):720–725. [PubMed] [Google Scholar]
  17. Ignotz R. A., Endo T., Massagué J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem. 1987 May 15;262(14):6443–6446. [PubMed] [Google Scholar]
  18. Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell. 1990 Aug 24;62(4):611–614. doi: 10.1016/0092-8674(90)90104-m. [DOI] [PubMed] [Google Scholar]
  19. Kurata S., Hata R. Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J Biol Chem. 1991 May 25;266(15):9997–10003. [PubMed] [Google Scholar]
  20. Kurkinen M., Taylor A., Garrels J. I., Hogan B. L. Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem. 1984 May 10;259(9):5915–5922. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lorimer I. A., Mason M. E., Sanwal B. D. Levels of type I cAMP-dependent protein kinase regulatory subunit are regulated by changes in turnover rate during skeletal myogenesis. J Biol Chem. 1987 Dec 15;262(35):17200–17205. [PubMed] [Google Scholar]
  24. Massagué J., Cheifetz S., Endo T., Nadal-Ginard B. Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8206–8210. doi: 10.1073/pnas.83.21.8206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller E. J., Rhodes R. K. Preparation and characterization of the different types of collagen. Methods Enzymol. 1982;82(Pt A):33–64. doi: 10.1016/0076-6879(82)82059-4. [DOI] [PubMed] [Google Scholar]
  26. Nagata K., Saga S., Yamada K. M. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol. 1986 Jul;103(1):223–229. doi: 10.1083/jcb.103.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagata K., Yamada K. M. Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. J Biol Chem. 1986 Jun 5;261(16):7531–7536. [PubMed] [Google Scholar]
  28. Nakai A., Satoh M., Hirayoshi K., Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol. 1992 May;117(4):903–914. doi: 10.1083/jcb.117.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nandan D., Cates G. A., Ball E. H., Sanwal B. D. A collagen-binding protein involved in the differentiation of myoblasts recognizes the Arg-Gly-Asp sequence. Exp Cell Res. 1988 Nov;179(1):289–297. doi: 10.1016/0014-4827(88)90368-0. [DOI] [PubMed] [Google Scholar]
  30. Nandan D., Cates G. A., Ball E. H., Sanwal B. D. Partial characterization of a collagen-binding, differentiation-related glycoprotein from skeletal myoblasts. Arch Biochem Biophys. 1990 May 1;278(2):291–296. doi: 10.1016/0003-9861(90)90263-x. [DOI] [PubMed] [Google Scholar]
  31. Nandan D., Clarke E. P., Ball E. H., Sanwal B. D. Ethyl-3,4-dihydroxybenzoate inhibits myoblast differentiation: evidence for an essential role of collagen. J Cell Biol. 1990 May;110(5):1673–1679. doi: 10.1083/jcb.110.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nusgens B., Delain D., Sénéchal H., Winand R., Lapierre C. M., Wahrmann J. P. Metabolic changes in the extracellular matrix during differentiation of myoblasts of the L6 line and of a Myo- non-fusing mutant. Exp Cell Res. 1986 Jan;162(1):51–62. doi: 10.1016/0014-4827(86)90425-8. [DOI] [PubMed] [Google Scholar]
  33. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  34. Potempa J., Dubin A., Watorek W., Travis J. An elastase inhibitor from equine leukocyte cytosol belongs to the serpin superfamily. Further characterization and amino acid sequence of the reactive center. J Biol Chem. 1988 May 25;263(15):7364–7369. [PubMed] [Google Scholar]
  35. Raghow R., Gossage D., Kang A. H. Pretranslational regulation of type I collagen, fibronectin, and a 50-kilodalton noncollagenous extracellular protein by dexamethasone in rat fibroblasts. J Biol Chem. 1986 Apr 5;261(10):4677–4684. [PubMed] [Google Scholar]
  36. Saga S., Nagata K., Chen W. T., Yamada K. M. pH-dependent function, purification, and intracellular location of a major collagen-binding glycoprotein. J Cell Biol. 1987 Jul;105(1):517–527. doi: 10.1083/jcb.105.1.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sage H., Bornstein P. Preparation and characterization of procollagens and procollagen-collagen intermediates. Methods Enzymol. 1982;82(Pt A):96–127. doi: 10.1016/0076-6879(82)82061-2. [DOI] [PubMed] [Google Scholar]
  38. Sandmeyer S., Gallis B., Bornstein P. Coordinate transcriptional regulation of type I procollagen genes by Rous sarcoma virus. J Biol Chem. 1981 May 25;256(10):5022–5028. [PubMed] [Google Scholar]
  39. Smith B. D., Niles R. Characterization of collagen synthesized by normal and chemically transformed rat liver epithelial cell lines. Biochemistry. 1980 Apr 29;19(9):1820–1825. doi: 10.1021/bi00550a014. [DOI] [PubMed] [Google Scholar]
  40. Tabin C. J., Bradley S. M., Bargmann C. I., Weinberg R. A., Papageorge A. G., Scolnick E. M., Dhar R., Lowy D. R., Chang E. H. Mechanism of activation of a human oncogene. Nature. 1982 Nov 11;300(5888):143–149. doi: 10.1038/300143a0. [DOI] [PubMed] [Google Scholar]
  41. Tsao M. S., Grisham J. W. Expression of protein disulfide isomerase in cultured rat liver epithelial cells is unrelated to the growth inhibitory effect of TGF-beta 1. Biochem Biophys Res Commun. 1991 Jan 31;174(2):478–482. doi: 10.1016/0006-291x(91)91441-e. [DOI] [PubMed] [Google Scholar]
  42. Wang S. Y., Gudas L. J. A retinoic acid-inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue. J Biol Chem. 1990 Sep 15;265(26):15818–15822. [PubMed] [Google Scholar]
  43. Weiner F. R., Czaja M. J., Jefferson D. M., Giambrone M. A., Tur-Kaspa R., Reid L. M., Zern M. A. The effects of dexamethasone on in vitro collagen gene expression. J Biol Chem. 1987 May 25;262(15):6955–6958. [PubMed] [Google Scholar]
  44. Wikström L., Lodish H. F. Endoplasmic reticulum degradation of a subunit of the asialoglycoprotein receptor in vitro. Vesicular transport from endoplasmic reticulum is unnecessary. J Biol Chem. 1992 Jan 5;267(1):5–8. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES