Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Apr 1;121(1):135–143. doi: 10.1083/jcb.121.1.135

Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density

PMCID: PMC2119772  PMID: 8458866

Abstract

The rat central nervous system (CNS) has previously been shown to synthesize pregnenolone (PREG) and convert it to progesterone (PROG) and 7 alpha-hydroxy-PREG (7 alpha-OH PREG). Astrocytes, which participate to the regulation of the CNS function, might be involved in the metabolism of neurosteroids. Purified type 1 astrocytes were obtained from fetal rat forebrain with the use of selective culture conditions and were identified by immunostaining with specific antibodies (GFAP+, A2B5-). They were plated at low, intermediate, or high densities (2.5-5 x 10(5), 1-2 x 10(6), or 4-8 x 10(6) cells/dish, respectively) and maintained for 21 d. They were then incubated with 14C-PREG and 14C-DHEA for 24 h and the steroids extracted from cells and media were analyzed. Most radioactive derivatives were released into incubation media. Two metabolic pathways were mainly observed. PREG and DHEA were oxidized to PROG and androstenedione (ADIONE), respectively, [3 beta-hydroxysteroid-dehydrogenase, delta 5-->4 3- ketosteroid-isomerase (3 beta-HSD) activity], and converted to 7 alpha- OH PREG and 7 alpha-OH DHEA, respectively (7 alpha-hydroxylase activity). After low density plating, the formation of PROG and ADIONE was approximately 10% of incubated radioactivity, tenfold larger than that of 7 alpha-hydroxylated metabolites. In contrast, after high density plating, low levels of PROG and ADIONE were formed, whereas the conversion to either 7 alpha-OH PREG or 7 alpha-OH DHEA was > or = 50%. The results expressed per cell indicated that the 3 beta-HSD activity was almost completely inhibited at high cell density, in contrast to the 7 alpha-hydroxylation which was maintained or increased. The pattern of steroid metabolism was related to cell density at the time of measurement and not to an early commitment of cells: when primary cultures were plated at high density (8 x 10(6) cells/dish), then subcultured after several dilutions (3-, 9-, or 27-fold), the 3 beta- HSD activity was recovered only at low density. Furthermore, when 5 x 10(5) cells were centrifuged and the resulting clusters were plated, 3 beta-HSD activity was decreased, whereas steroid 7 alpha-hydroxylation was enhanced. This implies that cell density per se, but neither cell number nor a diffusible factor(s) is involved in the regulation of steroid metabolism. We conclude that astrocytes in culture metabolize PREG and DHEA, and that the metabolic conversions and, therefore, the related enzymatic activities depend on cell-to-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akwa Y., Morfin R. F., Robel P., Baulieu E. E. Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J. 1992 Dec 15;288(Pt 3):959–964. doi: 10.1042/bj2880959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  3. Corpéchot C., Robel P., Axelson M., Sjövall J., Baulieu E. E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4704–4707. doi: 10.1073/pnas.78.8.4704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corpéchot C., Synguelakis M., Talha S., Axelson M., Sjövall J., Vihko R., Baulieu E. E., Robel P. Pregnenolone and its sulfate ester in the rat brain. Brain Res. 1983 Jun 27;270(1):119–125. doi: 10.1016/0006-8993(83)90797-7. [DOI] [PubMed] [Google Scholar]
  5. Dani J. W., Chernjavsky A., Smith S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992 Mar;8(3):429–440. doi: 10.1016/0896-6273(92)90271-e. [DOI] [PubMed] [Google Scholar]
  6. Dermietzel R., Hertberg E. L., Kessler J. A., Spray D. C. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci. 1991 May;11(5):1421–1432. doi: 10.1523/JNEUROSCI.11-05-01421.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fischer G., Kettenmann H. Cultured astrocytes form a syncytium after maturation. Exp Cell Res. 1985 Aug;159(2):273–279. doi: 10.1016/s0014-4827(85)80001-x. [DOI] [PubMed] [Google Scholar]
  8. Friedman S. J., Bokesch H., Skehan P. The regulation of sterol metabolism by cell interactions. Exp Cell Res. 1987 Oct;172(2):463–473. doi: 10.1016/0014-4827(87)90404-6. [DOI] [PubMed] [Google Scholar]
  9. Gerschenson L. E., Depaoli J. R., Murai J. T. Inhibition of estrogen-induced proliferation of cultured rabbit uterine epithelial cells by a cell density-dependent factor produced by the same cells. J Steroid Biochem. 1981 Oct;14(10):959–969. doi: 10.1016/0022-4731(81)90203-x. [DOI] [PubMed] [Google Scholar]
  10. Groyer A., Robel P. DNA measurement by mithramycin fluorescence in chromatin solubilized by heparin. Anal Biochem. 1980 Jul 15;106(1):262–268. doi: 10.1016/0003-2697(80)90146-3. [DOI] [PubMed] [Google Scholar]
  11. Janeczko K. The proliferative response of astrocytes to injury in neonatal rat brain. A combined immunocytochemical and autoradiographic study. Brain Res. 1988 Jul 26;456(2):280–285. doi: 10.1016/0006-8993(88)90229-6. [DOI] [PubMed] [Google Scholar]
  12. Jung-Testas I., Hu Z. Y., Baulieu E. E., Robel P. Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology. 1989 Oct;125(4):2083–2091. doi: 10.1210/endo-125-4-2083. [DOI] [PubMed] [Google Scholar]
  13. Jung-Testas I., Renoir J. M., Gasc J. M., Baulieu E. E. Estrogen-inducible progesterone receptor in primary cultures of rat glial cells. Exp Cell Res. 1991 Mar;193(1):12–19. doi: 10.1016/0014-4827(91)90532-y. [DOI] [PubMed] [Google Scholar]
  14. Kartner N., Ling V. Multidrug resistance in cancer. Sci Am. 1989 Mar;260(3):44–51. doi: 10.1038/scientificamerican0389-44. [DOI] [PubMed] [Google Scholar]
  15. Lieberman S., Greenfield N. J., Wolfson A. A heuristic proposal for understanding steroidogenic processes. Endocr Rev. 1984 Winter;5(1):128–148. doi: 10.1210/edrv-5-1-128. [DOI] [PubMed] [Google Scholar]
  16. Majewska M. D., Demirgören S., Spivak C. E., London E. D. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res. 1990 Aug 27;526(1):143–146. doi: 10.1016/0006-8993(90)90261-9. [DOI] [PubMed] [Google Scholar]
  17. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
  18. Majewska M. D., Mienville J. M., Vicini S. Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett. 1988 Aug 1;90(3):279–284. doi: 10.1016/0304-3940(88)90202-9. [DOI] [PubMed] [Google Scholar]
  19. Martin D. L. Synthesis and release of neuroactive substances by glial cells. Glia. 1992;5(2):81–94. doi: 10.1002/glia.440050202. [DOI] [PubMed] [Google Scholar]
  20. McEwen B. S., Davis P. G., Parsons B., Pfaff D. W. The brain as a target for steroid hormone action. Annu Rev Neurosci. 1979;2:65–112. doi: 10.1146/annurev.ne.02.030179.000433. [DOI] [PubMed] [Google Scholar]
  21. Morfin R. F., Berthou F., Floch H. H., Vena R. L., Ofner P. Evaluation of the specific activity of biochemically-prepared carrier-crystallized androgen radiometabolites by a new procedure. J Steroid Biochem. 1973 Jul;4(4):381–391. doi: 10.1016/0022-4731(73)90008-3. [DOI] [PubMed] [Google Scholar]
  22. Morgenstern K., Hanson-Painton O., Wang B. L., De Bault L. Density-dependent regulation of cell surface gamma-glutamyl transpeptidase in cultured glial cells. J Cell Physiol. 1992 Jan;150(1):104–115. doi: 10.1002/jcp.1041500115. [DOI] [PubMed] [Google Scholar]
  23. Nakhla A. M., Mather J. P., Jänne O. A., Bardin C. W. Estrogen and androgen receptors in Sertoli, Leydig, myoid, and epithelial cells: effects of time in culture and cell density. Endocrinology. 1984 Jul;115(1):121–128. doi: 10.1210/endo-115-1-121. [DOI] [PubMed] [Google Scholar]
  24. Nieto-Sampedro M., Saneto R. P., de Vellis J., Cotman C. W. The control of glial populations in brain: changes in astrocyte mitogenic and morphogenic factors in response to injury. Brain Res. 1985 Sep 23;343(2):320–328. doi: 10.1016/0006-8993(85)90750-4. [DOI] [PubMed] [Google Scholar]
  25. Paul S. M., Purdy R. H. Neuroactive steroids. FASEB J. 1992 Mar;6(6):2311–2322. [PubMed] [Google Scholar]
  26. Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci. 1983 Jun;3(6):1289–1300. doi: 10.1523/JNEUROSCI.03-06-01289.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saad A. D., Soh B. M., Moscona A. A. Modulation of cortisol receptors in embryonic retina cells by changes in cell-cell contacts: correlations with induction of glutamine synthetase. Biochem Biophys Res Commun. 1981 Feb 12;98(3):701–708. doi: 10.1016/0006-291x(81)91170-0. [DOI] [PubMed] [Google Scholar]
  28. Singer S. J. Intercellular communication and cell-cell adhesion. Science. 1992 Mar 27;255(5052):1671–1677. doi: 10.1126/science.1313187. [DOI] [PubMed] [Google Scholar]
  29. Walicke P. A. Novel neurotrophic factors, receptors, and oncogenes. Annu Rev Neurosci. 1989;12:103–126. doi: 10.1146/annurev.ne.12.030189.000535. [DOI] [PubMed] [Google Scholar]
  30. Warner M., Strömstedt M., Möller L., Gustafsson J. A. Distribution and regulation of 5 alpha-androstane-3 beta,17 beta-diol hydroxylase in the rat central nervous system. Endocrinology. 1989 Jun;124(6):2699–2706. doi: 10.1210/endo-124-6-2699. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES