Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 May 2;121(4):847–853. doi: 10.1083/jcb.121.4.847

Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins

PMCID: PMC2119801  PMID: 8491777

Abstract

The cDNA coding for calf filensin, a membrane-associated protein of the lens fiber cells, has been cloned and sequenced. The predicted 755- amino acid-long open reading frame shows primary and secondary structure similarity to intermediate filament (IF) proteins. Filensin can be divided into an NH2-terminal domain (head) of 38 amino acids, a middle domain (rod) of 279 amino acids, and a COOH-terminal domain (tail) of 438 amino acids. The head domain contains a di- arginine/aromatic amino acid motif which is also found in the head domains of various intermediate filament proteins and includes a potential protein kinase A phosphorylation site. By multiple alignment to all known IF protein sequences, the filensin rod, which is the shortest among IF proteins, can be subdivided into three subdomains (coils 1a, 1b, and 2). A 29 amino acid truncation in the coil 2 region accounts for the smaller size of this domain. The filensin tail contains 6 1/2 tandem repeats which match analogous motifs of mammalian neurofilament M and H proteins. We suggest that filensin is a novel IF protein which does not conform to any of the previously described classes. Purified filensin fails to form regular filaments in vitro (Merdes, A., M. Brunkener, H. Horstmann, and S. D. Georgatos. 1991. J. Cell Biol. 115:397-410), probably due to the missing segment in the coil 2 region. Participation of filensin in a filamentous network in vivo may be facilitated by an assembly partner.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggeli A., Hamodrakas S. J., Komitopoulou K., Konsolaki M. Tandemly repeating peptide motifs and their secondary structure in Ceratitis capitata eggshell proteins Ccs36 and Ccs38. Int J Biol Macromol. 1991 Oct;13(5):307–315. doi: 10.1016/0141-8130(91)90032-p. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2247–2249. doi: 10.1093/nar/19.suppl.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunkener M., Georgatos S. D. Membrane-binding properties of filensin, a cytoskeletal protein of the lens fiber cells. J Cell Sci. 1992 Nov;103(Pt 3):709–718. doi: 10.1242/jcs.103.3.709. [DOI] [PubMed] [Google Scholar]
  5. Burley S. K., Petsko G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985 Jul 5;229(4708):23–28. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
  6. Carden M. J., Schlaepfer W. W., Lee V. M. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem. 1985 Aug 15;260(17):9805–9817. [PubMed] [Google Scholar]
  7. Chin T. K., Eagles P. A., Maggs A. The proteolytic digestion of ox neurofilaments with trypsin and alpha-chymotrypsin. Biochem J. 1983 Nov 1;215(2):239–252. doi: 10.1042/bj2150239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen C., Parry D. A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. doi: 10.1002/prot.340070102. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dignam S. S., Yang L., Lezzi M., Case S. T. Identification of a developmentally regulated gene for a 140-kDa secretory protein in salivary glands of Chironomus tentans larvae. J Biol Chem. 1989 Jun 5;264(16):9444–9452. [PubMed] [Google Scholar]
  12. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FitzGerald P. G., Gottlieb W. The Mr 115 kd fiber cell-specific protein is a component of the lens cytoskeleton. Curr Eye Res. 1989 Aug;8(8):801–811. doi: 10.3109/02713688909000870. [DOI] [PubMed] [Google Scholar]
  14. FitzGerald P. G. Immunochemical characterization of a Mr 115 lens fiber cell-specific extrinsic membrane protein. Curr Eye Res. 1988 Dec;7(12):1243–1253. doi: 10.3109/02713688809033228. [DOI] [PubMed] [Google Scholar]
  15. Franz J. K., Franke W. W. Cloning of cDNA and amino acid sequence of a cytokeratin expressed in oocytes of Xenopus laevis. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6475–6479. doi: 10.1073/pnas.83.17.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galli J., Lendahl U., Paulsson G., Ericsson C., Bergman T., Carlquist M., Wieslander L. A new member of a secretory protein gene family in the dipteran Chironomus tentans has a variant repeat structure. J Mol Evol. 1990 Jul;31(1):40–50. doi: 10.1007/BF02101791. [DOI] [PubMed] [Google Scholar]
  17. Geisler N., Kaufmann E., Fischer S., Plessmann U., Weber K. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J. 1983;2(8):1295–1302. doi: 10.1002/j.1460-2075.1983.tb01584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geisler N., Schünemann J., Weber K. Chemical cross-linking indicates a staggered and antiparallel protofilament of desmin intermediate filaments and characterizes one higher-level complex between protofilaments. Eur J Biochem. 1992 Jun 15;206(3):841–852. doi: 10.1111/j.1432-1033.1992.tb16992.x. [DOI] [PubMed] [Google Scholar]
  19. Geisler N., Weber K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1982;1(12):1649–1656. doi: 10.1002/j.1460-2075.1982.tb01368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gribskov M., Burgess R. R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res. 1986 Aug 26;14(16):6745–6763. doi: 10.1093/nar/14.16.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hatzfeld M., Weber K. A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly and disassembles preformed filaments. J Cell Biol. 1992 Jan;116(1):157–166. doi: 10.1083/jcb.116.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Herrmann H., Hofmann I., Franke W. W. Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J Mol Biol. 1992 Feb 5;223(3):637–650. doi: 10.1016/0022-2836(92)90980-x. [DOI] [PubMed] [Google Scholar]
  23. Hofmann I., Herrmann H. Interference in vimentin assembly in vitro by synthetic peptides derived from the vimentin head domain. J Cell Sci. 1992 Mar;101(Pt 3):687–700. doi: 10.1242/jcs.101.3.687. [DOI] [PubMed] [Google Scholar]
  24. Höger T. H., Zatloukal K., Waizenegger I., Krohne G. Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin. Chromosoma. 1990 Oct;99(6):379–390. doi: 10.1007/BF01726689. [DOI] [PubMed] [Google Scholar]
  25. Ireland M., Maisel H. A cytoskeletal protein unique to lens fiber cell differentiation. Exp Eye Res. 1984 Jun;38(6):637–645. doi: 10.1016/0014-4835(84)90182-9. [DOI] [PubMed] [Google Scholar]
  26. Ireland M., Maisel H. Phosphorylation of chick lens proteins. Curr Eye Res. 1984 Jul;3(7):961–968. doi: 10.3109/02713688409167214. [DOI] [PubMed] [Google Scholar]
  27. Julien J. P., Grosveld F., Yazdanbaksh K., Flavell D., Meijer D., Mushynski W. The structure of a human neurofilament gene (NF-L): a unique exon-intron organization in the intermediate filament gene family. Biochim Biophys Acta. 1987 Jun 6;909(1):10–20. doi: 10.1016/0167-4781(87)90041-8. [DOI] [PubMed] [Google Scholar]
  28. Julien J. P., Mushynski W. E. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem. 1983 Mar 25;258(6):4019–4025. [PubMed] [Google Scholar]
  29. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  30. Kouklis P. D., Traub P., Georgatos S. D. Involvement of the consensus sequence motif at coil 2b in the assembly and stability of vimentin filaments. J Cell Sci. 1992 May;102(Pt 1):31–41. doi: 10.1242/jcs.102.1.31. [DOI] [PubMed] [Google Scholar]
  31. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  33. Lakey A., Ferguson C., Labeit S., Reedy M., Larkins A., Butcher G., Leonard K., Bullard B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990 Nov;9(11):3459–3467. doi: 10.1002/j.1460-2075.1990.tb07554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lees J. F., Shneidman P. S., Skuntz S. F., Carden M. J., Lazzarini R. A. The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it. EMBO J. 1988 Jul;7(7):1947–1955. doi: 10.1002/j.1460-2075.1988.tb03032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leonard D. G., Gorham J. D., Cole P., Greene L. A., Ziff E. B. A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J Cell Biol. 1988 Jan;106(1):181–193. doi: 10.1083/jcb.106.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maisel H., Perry M. M. Electron microscope observations on some structural proteins of the chick lens. Exp Eye Res. 1972 Jul;14(1):7–12. doi: 10.1016/0014-4835(72)90136-4. [DOI] [PubMed] [Google Scholar]
  37. Masaki S., Watanabe T. cDNA sequence analysis of CP94: rat lens fiber cell beaded-filament structural protein shows homology to cytokeratins. Biochem Biophys Res Commun. 1992 Jul 15;186(1):190–198. doi: 10.1016/s0006-291x(05)80792-2. [DOI] [PubMed] [Google Scholar]
  38. Merdes A., Brunkener M., Horstmann H., Georgatos S. D. Filensin: a new vimentin-binding, polymerization-competent, and membrane-associated protein of the lens fiber cell. J Cell Biol. 1991 Oct;115(2):397–410. doi: 10.1083/jcb.115.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Myers M. W., Lazzarini R. A., Lee V. M., Schlaepfer W. W., Nelson D. L. The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J. 1987 Jun;6(6):1617–1626. doi: 10.1002/j.1460-2075.1987.tb02409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Quinlan R. A., Carter J. M., Hutcheson A. M., Campbell D. G. The 53kDa polypeptide component of the bovine fibre cell cytoskeleton is derived from the 115kDa beaded filament protein: evidence for a fibre cell specific intermediate filament protein. Curr Eye Res. 1992 Sep;11(9):909–921. doi: 10.3109/02713689209033488. [DOI] [PubMed] [Google Scholar]
  42. Steinert P. M. Organization of coiled-coil molecules in native mouse keratin 1/keratin 10 intermediate filaments: evidence for alternating rows of antiparallel in-register and antiparallel staggered molecules. J Struct Biol. 1991 Oct;107(2):157–174. doi: 10.1016/1047-8477(91)90019-s. [DOI] [PubMed] [Google Scholar]
  43. Stewart M., Quinlan R. A., Moir R. D. Molecular interactions in paracrystals of a fragment corresponding to the alpha-helical coiled-coil rod portion of glial fibrillary acidic protein: evidence for an antiparallel packing of molecules and polymorphism related to intermediate filament structure. J Cell Biol. 1989 Jul;109(1):225–234. doi: 10.1083/jcb.109.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES