Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Oct 2;123(2):323–336. doi: 10.1083/jcb.123.2.323

Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes

PMCID: PMC2119836  PMID: 8408216

Abstract

Adult feline ventricular myocytes cultured on a laminin-coated substratum reestablish intercellular junctions, yet disassemble their myofibrils. Immunofluorescence microscopy reveals that these non- beating heart cells lack vinculin-positive focal adhesions; moreover, intercellular junctions are also devoid of vinculin. When these quiescent myocytes are stimulated to contract with the beta-adrenergic agonist, isoproterenol, extensive vinculin-positive focal adhesions and intercellular junctions emerge. If solitary myocytes are stimulated to beat, an elaborate series of vinculin-positive focal adhesions develop which appear to parallel the reassembly of myofibrils. In cultures where neighboring myocytes reestablish cell-cell contact, myofibrils appear to reassemble from the fascia adherens rather than focal contacts. Activation of beating is accompanied by a significant reduction in the rate of total and cytoskeletal protein synthesis; in fact, myofibrillar reassembly, redevelopment of focal adhesions and fascia adherens junctions require no protein synthesis for at least 24 h, implying the existence of an assembly competent pool of cytoskeletal proteins. Maturation of the fasciae adherens and the appearance of vinculin within Z-line/costameres, does require de novo synthesis of new cytoskeletal proteins. Changes in cytoskeletal protein turnover appear dependent on beta agonist-induced cAMP production, but myofibrillar reassembly is a cAMP-independent event. Such observations suggest that mechanical forces, in the guise of contractile activity, regulate vinculin distribution and myofibrillar order in cultured adult feline heart cells.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton B. T., Meyer D. M., Simpson D. G. Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J Cell Sci. 1986 Dec;86:233–248. doi: 10.1242/jcs.86.1.233. [DOI] [PubMed] [Google Scholar]
  2. Barstead R. J., Waterston R. H. Vinculin is essential for muscle function in the nematode. J Cell Biol. 1991 Aug;114(4):715–724. doi: 10.1083/jcb.114.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellas R. E., Bendori R., Farmer S. R. Epidermal growth factor activation of vinculin and beta 1-integrin gene transcription in quiescent Swiss 3T3 cells. Regulation through a protein kinase C-independent pathway. J Biol Chem. 1991 Jun 25;266(18):12008–12014. [PubMed] [Google Scholar]
  4. Ben-Ze'ev A., Reiss R., Bendori R., Gorodecki B. Transient induction of vinculin gene expression in 3T3 fibroblasts stimulated by serum-growth factors. Cell Regul. 1990 Aug;1(9):621–636. doi: 10.1091/mbc.1.9.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bendori R., Salomon D., Geiger B. Contact-dependent regulation of vinculin expression in cultured fibroblasts: a study with vinculin-specific cDNA probes. EMBO J. 1987 Oct;6(10):2897–2905. doi: 10.1002/j.1460-2075.1987.tb02593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bendori R., Salomon D., Geiger B. Identification of two distinct functional domains on vinculin involved in its association with focal contacts. J Cell Biol. 1989 Jun;108(6):2383–2393. doi: 10.1083/jcb.108.6.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bishopric N. H., Kedes L. Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2132–2136. doi: 10.1073/pnas.88.6.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  9. Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
  10. Clark W. A., Rudnick S. J., LaPres J. J., Lesch M., Decker R. S. Hypertrophy of isolated adult feline heart cells following beta-adrenergic-induced beating. Am J Physiol. 1991 Sep;261(3 Pt 1):C530–C542. doi: 10.1152/ajpcell.1991.261.3.C530. [DOI] [PubMed] [Google Scholar]
  11. Clark W. A., Rudnick S. J., Simpson D. G., LaPres J. J., Decker R. S. Cultured adult cardiac myocytes maintain protein synthetic capacity of intact adult hearts. Am J Physiol. 1993 Feb;264(2 Pt 2):H573–H582. doi: 10.1152/ajpheart.1993.264.2.H573. [DOI] [PubMed] [Google Scholar]
  12. Claycomb W. C., Moses R. L. Growth factors and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Dev Biol. 1988 Jun;127(2):257–265. doi: 10.1016/0012-1606(88)90313-2. [DOI] [PubMed] [Google Scholar]
  13. Cooper G., 4th Cardiocyte adaptation to chronically altered load. Annu Rev Physiol. 1987;49:501–518. doi: 10.1146/annurev.ph.49.030187.002441. [DOI] [PubMed] [Google Scholar]
  14. Danowski B. A., Imanaka-Yoshida K., Sanger J. M., Sanger J. W. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol. 1992 Sep;118(6):1411–1420. doi: 10.1083/jcb.118.6.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Decker M. L., Behnke-Barclay M., Cook M. G., Lesch M., Decker R. S. Morphometric evaluation of the contractile apparatus in primary cultures of rabbit cardiac myocytes. Circ Res. 1991 Jul;69(1):86–94. doi: 10.1161/01.res.69.1.86. [DOI] [PubMed] [Google Scholar]
  16. Decker M. L., Simpson D. G., Behnke M., Cook M. G., Decker R. S. Morphological analysis of contracting and quiescent adult rabbit cardiac myocytes in long-term culture. Anat Rec. 1990 Jul;227(3):285–299. doi: 10.1002/ar.1092270303. [DOI] [PubMed] [Google Scholar]
  17. Dlugosz A. A., Antin P. B., Nachmias V. T., Holtzer H. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984 Dec;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Geiger B., Ginsberg D., Salomon D., Volberg T. The molecular basis for the assembly and modulation of adherens-type junctions. Cell Differ Dev. 1990 Dec 2;32(3):343–353. doi: 10.1016/0922-3371(90)90049-3. [DOI] [PubMed] [Google Scholar]
  20. Geiger B., Volk T., Volberg T. Molecular heterogeneity of adherens junctions. J Cell Biol. 1985 Oct;101(4):1523–1531. doi: 10.1083/jcb.101.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  22. Goncharova E. J., Kam Z., Geiger B. The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development. 1992 Jan;114(1):173–183. doi: 10.1242/dev.114.1.173. [DOI] [PubMed] [Google Scholar]
  23. Jaken S., Leach K., Klauck T. Association of type 3 protein kinase C with focal contacts in rat embryo fibroblasts. J Cell Biol. 1989 Aug;109(2):697–704. doi: 10.1083/jcb.109.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klein I., Ojamaa K., Samarel A. M., Welikson R., Hong C. Hemodynamic regulation of myosin heavy chain gene expression. Studies in the transplanted rat heart. J Clin Invest. 1992 Jan;89(1):68–73. doi: 10.1172/JCI115587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Komuro I., Katoh Y., Kaida T., Shibazaki Y., Kurabayashi M., Hoh E., Takaku F., Yazaki Y. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem. 1991 Jan 15;266(2):1265–1268. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lu M. H., DiLullo C., Schultheiss T., Holtzer S., Murray J. M., Choi J., Fischman D. A., Holtzer H. The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol. 1992 Jun;117(5):1007–1022. doi: 10.1083/jcb.117.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McDermott P. J., Rothblum L. I., Smith S. D., Morgan H. E. Accelerated rates of ribosomal RNA synthesis during growth of contracting heart cells in culture. J Biol Chem. 1989 Oct 25;264(30):18220–18227. [PubMed] [Google Scholar]
  30. McDonough P. M., Glembotski C. C. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem. 1992 Jun 15;267(17):11665–11668. [PubMed] [Google Scholar]
  31. Mochly-Rosen D., Henrich C. J., Cheever L., Khaner H., Simpson P. C. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul. 1990 Aug;1(9):693–706. doi: 10.1091/mbc.1.9.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morgan H. E., Baker K. M. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation. 1991 Jan;83(1):13–25. doi: 10.1161/01.cir.83.1.13. [DOI] [PubMed] [Google Scholar]
  33. Pavalko F. M., Burridge K. Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin. J Cell Biol. 1991 Aug;114(3):481–491. doi: 10.1083/jcb.114.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samarel A. M., Engelmann G. L. Contractile activity modulates myosin heavy chain-beta expression in neonatal rat heart cells. Am J Physiol. 1991 Oct;261(4 Pt 2):H1067–H1077. doi: 10.1152/ajpheart.1991.261.4.H1067. [DOI] [PubMed] [Google Scholar]
  35. Samarel A. M., Spragia M. L., Maloney V., Kamal S. A., Engelmann G. L. Contractile arrest accelerates myosin heavy chain degradation in neonatal rat heart cells. Am J Physiol. 1992 Sep;263(3 Pt 1):C642–C652. doi: 10.1152/ajpcell.1992.263.3.C642. [DOI] [PubMed] [Google Scholar]
  36. Sanger J. M., Mittal B., Pochapin M. B., Sanger J. W. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol. 1986 Jun;102(6):2053–2066. doi: 10.1083/jcb.102.6.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanger J. W., Mittal B., Sanger J. M. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J Cell Biol. 1984 Mar;98(3):825–833. doi: 10.1083/jcb.98.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sefton B. M., Hunter T., Ball E. H., Singer S. J. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell. 1981 Apr;24(1):165–174. doi: 10.1016/0092-8674(81)90512-2. [DOI] [PubMed] [Google Scholar]
  39. Simpson P. C., Kariya K., Karns L. R., Long C. S., Karliner J. S. Adrenergic hormones and control of cardiac myocyte growth. 1991 May 29-Jun 12Mol Cell Biochem. 104(1-2):35–43. doi: 10.1007/BF00229801. [DOI] [PubMed] [Google Scholar]
  40. Terracio L., Rubin K., Gullberg D., Balog E., Carver W., Jyring R., Borg T. K. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res. 1991 Mar;68(3):734–744. doi: 10.1161/01.res.68.3.734. [DOI] [PubMed] [Google Scholar]
  41. Tokuyasu K. T. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres. J Cell Biol. 1989 Jan;108(1):43–53. doi: 10.1083/jcb.108.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ungar F., Geiger B., Ben-Ze'ev A. Cell contact- and shape-dependent regulation of vinculin synthesis in cultured fibroblasts. 1986 Feb 27-Mar 5Nature. 319(6056):787–791. doi: 10.1038/319787a0. [DOI] [PubMed] [Google Scholar]
  43. Werth D. K., Niedel J. E., Pastan I. Vinculin, a cytoskeletal substrate of protein kinase C. J Biol Chem. 1983 Oct 10;258(19):11423–11426. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES