Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Sep 2;122(6):1351–1359. doi: 10.1083/jcb.122.6.1351

Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis

PMCID: PMC2119848  PMID: 8376467

Abstract

Subtractive immunization allowed the isolation and characterization of monoclonal antibodies that specifically inhibit metastasis but not proliferation of highly metastatic human tumor cells. The tolerizing agent cyclophosphamide was used to suppress the immune system in mice to dominant immunodeterminants present on a non-metastatic variant (M-) of the human epidermoid carcinoma cell line (HEp3). Mice were then inoculated with a highly metastatic variant (M+) of HEp3 to enhance an immune response to antigenic determinants present on metastatic cells. Hybridomas were generated and screened by ELISA for differential reactivity to M+ HEp3 over M- HEp3 cells. This experimental approach, termed subtractive immunization (S.I.), was compared to a control immunization protocol, which eliminated the cyclophosphamide treatment. The S.I. protocol resulted in an eight-fold increase in the proportion of mAbs that react with molecules enriched on the surface of the M+ HEp3 cells. Two of the mAbs derived from the S.I. protocol, designated DM12-4 and 1A5, were purified and examined for their effect in a metastasis model system in which chick embryos are transplanted with primary HEp3 tumors. Purified mAbs DM12-4 and 1A5, inoculated i.v. into the embryos, inhibited spontaneous metastasis of HEp3 cells by 86 and 90%, respectively. The mAbs are specifically anti-metastatic in that they have no effect on the growth of HEp3 cells in vitro nor did they inhibit primary tumor growth in vivo. The mAbs recognize M+ HEp3 cell surface molecules of 55 kD and 29 kD, respectively. These data demonstrate that the S.I. protocol can be used for the development of unique mAbs that are reactive with antigenic determinants whose expression is elevated on metastatic human tumor cells and which function mechanistically in the metastatic cascade.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albini A., Iwamoto Y., Kleinman H. K., Martin G. R., Aaronson S. A., Kozlowski J. M., McEwan R. N. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987 Jun 15;47(12):3239–3245. [PubMed] [Google Scholar]
  2. Boukerche H., Berthier-Vergnes O., Bailly M., Doré J. F., Leung L. L., McGregor J. L. A monoclonal antibody (LYP18) directed against the blood platelet glycoprotein IIb/IIIa complex inhibits human melanoma growth in vivo. Blood. 1989 Aug 15;74(3):909–912. [PubMed] [Google Scholar]
  3. Brodt P. Tumor cell adhesion to frozen lymph node sections--an in vitro correlate of lymphatic metastasis. Clin Exp Metastasis. 1989 May-Jun;7(3):343–352. doi: 10.1007/BF01753685. [DOI] [PubMed] [Google Scholar]
  4. Bürk R. R. A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci U S A. 1973 Feb;70(2):369–372. doi: 10.1073/pnas.70.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cajot J. F., Schleuning W. D., Medcalf R. L., Bamat J., Testuz J., Liebermann L., Sordat B. Mouse L cells expressing human prourokinase-type plasminogen activator: effects on extracellular matrix degradation and invasion. J Cell Biol. 1989 Aug;109(2):915–925. doi: 10.1083/jcb.109.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen W. C., Obrink B. Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol. 1991 Jul;114(2):319–327. doi: 10.1083/jcb.114.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felding-Habermann B., Mueller B. M., Romerdahl C. A., Cheresh D. A. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992 Jun;89(6):2018–2022. doi: 10.1172/JCI115811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fidler I. J. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990 Oct 1;50(19):6130–6138. [PubMed] [Google Scholar]
  9. Friberger P., Knös M., Gustavsson S., Aurell L., Claeson G. Methods for determination of plasmin, antiplasmin and plasminogen by means of substrate S-2251. Haemostasis. 1978;7(2-3):138–145. doi: 10.1159/000214252. [DOI] [PubMed] [Google Scholar]
  10. Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
  11. Gil J., Alvarez R., Viñuela J. E., Ruiz de Morales J. G., Bustos A., De la Concha E. G., Subiza J. L. Inhibition of in vivo tumor growth by a monoclonal IgM antibody recognizing tumor cell surface carbohydrates. Cancer Res. 1990 Nov 15;50(22):7301–7306. [PubMed] [Google Scholar]
  12. Gordon J. R., Quigley J. P. Early spontaneous metastasis in the human epidermoid carcinoma HEp3/chick embryo model: contribution of incidental colonization. Int J Cancer. 1986 Sep 15;38(3):437–444. doi: 10.1002/ijc.2910380321. [DOI] [PubMed] [Google Scholar]
  13. Günthert U., Hofmann M., Rudy W., Reber S., Zöller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991 Apr 5;65(1):13–24. doi: 10.1016/0092-8674(91)90403-l. [DOI] [PubMed] [Google Scholar]
  14. Hanski C., Sheehan J., Kiehntopf M., Stolze B., Stein H., Riecken E. O. Increased number of accessible sugar epitopes defined with monoclonal antibody AM-3 on colonic mucins is associated with malignant transformation of colonic mucosa. Cancer Res. 1991 Oct 1;51(19):5342–5347. [PubMed] [Google Scholar]
  15. Heffernan M., Yousefi S., Dennis J. W. Molecular characterization of P2B/LAMP-1, a major protein target of a metastasis-associated oligosaccharide structure. Cancer Res. 1989 Nov 1;49(21):6077–6084. [PubMed] [Google Scholar]
  16. Hofmann M., Rudy W., Zöller M., Tölg C., Ponta H., Herrlich P., Günthert U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res. 1991 Oct 1;51(19):5292–5297. [PubMed] [Google Scholar]
  17. Katagiri Y., Hayashi Y., Baba I., Suzuki H., Tanoue K., Yamazaki H. Characterization of platelet aggregation induced by the human melanoma cell line HMV-I: roles of heparin, plasma adhesive proteins, and tumor cell membrane proteins. Cancer Res. 1991 Feb 15;51(4):1286–1293. [PubMed] [Google Scholar]
  18. Kimura A. K., Xiang J. H. High levels of Met-72 antigen expression: correlation with metastatic activity of B16 melanoma tumor cell variants. J Natl Cancer Inst. 1986 Jun;76(6):1247–1254. [PubMed] [Google Scholar]
  19. King S. W., Morrow K. J., Jr Monoclonal antibodies produced against antigenic determinants present in complex mixtures of proteins. Biotechniques. 1988 Oct;6(9):856–861. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lafrenie R. M., Podor T. J., Buchanan M. R., Orr F. W. Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res. 1992 Apr 15;52(8):2202–2208. [PubMed] [Google Scholar]
  22. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  23. Many A., Schwartz R. S. On the mechanism of immunological tolerance in cyclophosphamide-treated mice. Clin Exp Immunol. 1970 Jan;6(1):87–99. [PMC free article] [PubMed] [Google Scholar]
  24. Marken J. S., Schieven G. L., Hellström I., Hellström K. E., Aruffo A. Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3503–3507. doi: 10.1073/pnas.89.8.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matthew W. D., Patterson P. H. The production of a monoclonal antibody that blocks the action of a neurite outgrowth-promoting factor. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):625–631. doi: 10.1101/sqb.1983.048.01.066. [DOI] [PubMed] [Google Scholar]
  26. Matthew W. D., Sandrock A. W., Jr Cyclophosphamide treatment used to manipulate the immune response for the production of monoclonal antibodies. J Immunol Methods. 1987 Jun 26;100(1-2):73–82. doi: 10.1016/0022-1759(87)90174-8. [DOI] [PubMed] [Google Scholar]
  27. Mooradian D. L., Purchio A. F., Furcht L. T. Differential effects of transforming growth factor beta 1 on the growth of poorly and highly metastatic murine melanoma cells. Cancer Res. 1990 Jan 15;50(2):273–277. [PubMed] [Google Scholar]
  28. Nicolson G. L. Cell surface molecules and tumor metastasis. Regulation of metastatic phenotypic diversity. Exp Cell Res. 1984 Jan;150(1):3–22. doi: 10.1016/0014-4827(84)90696-7. [DOI] [PubMed] [Google Scholar]
  29. Nicolson G. L., Inoue T., Van Pelt C. S., Cavanaugh P. G. Differential expression of a Mr approximately 90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 1990 Feb 1;50(3):515–520. [PubMed] [Google Scholar]
  30. Nielsen-Preiss S. M., Quigley J. P. Detection and characterization of low abundance cellular proteins that specifically increase upon loss of the metastatic phenotype. J Cell Biochem. 1993 Feb;51(2):219–235. doi: 10.1002/jcb.240510214. [DOI] [PubMed] [Google Scholar]
  31. Nowell P. C. Mechanisms of tumor progression. Cancer Res. 1986 May;46(5):2203–2207. [PubMed] [Google Scholar]
  32. Ossowski L., Reich E. Experimental model for quantitative study of metastasis. Cancer Res. 1980 Jul;40(7):2300–2309. [PubMed] [Google Scholar]
  33. Ossowski L., Reich E. Loss of malignancy during serial passage of human carcinoma in culture and discordance between malignancy and transformation parameters. Cancer Res. 1980 Jul;40(7):2310–2315. [PubMed] [Google Scholar]
  34. Ossowski L., Russo H., Gartner M., Wilson E. L. Growth of a human carcinoma (HEp3) in nude mice: rapid and efficient metastasis. J Cell Physiol. 1987 Nov;133(2):288–296. doi: 10.1002/jcp.1041330212. [DOI] [PubMed] [Google Scholar]
  35. Ou S. K., McDonald C., Patterson P. H. Comparison of two techniques for targeting the production of monoclonal antibodies against particular antigens. J Immunol Methods. 1991 Dec 15;145(1-2):111–118. doi: 10.1016/0022-1759(91)90316-8. [DOI] [PubMed] [Google Scholar]
  36. Prigozhina T. B., Fontalin L. N. Mechanisms of antigen-induced blockade of immune response and cyclophosphamide-promoted tolerance to Salmonella typhi Vi antigen. Eur J Immunol. 1980 Aug;10(8):641–646. doi: 10.1002/eji.1830100812. [DOI] [PubMed] [Google Scholar]
  37. Raz A., McLellan W. L., Hart I. R., Bucana C. D., Hoyer L. C., Sela B. A., Dragsten P., Fidler I. J. Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res. 1980 May;40(5):1645–1651. [PubMed] [Google Scholar]
  38. Reeves M. E. A metastatic tumor cell line has greatly reduced levels of a specific homotypic cell adhesion molecule activity. Cancer Res. 1992 Mar 15;52(6):1546–1552. [PubMed] [Google Scholar]
  39. Rosen E. M., Goldberg I. D., Liu D., Setter E., Donovan M. A., Bhargava M., Reiss M., Kacinski B. M. Tumor necrosis factor stimulates epithelial tumor cell motility. Cancer Res. 1991 Oct 1;51(19):5315–5321. [PubMed] [Google Scholar]
  40. Ruoslahti E., Giancotti F. G. Integrins and tumor cell dissemination. Cancer Cells. 1989 Dec;1(4):119–126. [PubMed] [Google Scholar]
  41. Saitoh O., Wang W. C., Lotan R., Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem. 1992 Mar 15;267(8):5700–5711. [PubMed] [Google Scholar]
  42. Sensenbrenner L. L., Marini J. J., Colvin M. Comparative effects of cyclophosphamide, isophosphamide, 4-methylcyclophosphamide, and phosphoramide mustard on murine hematopoietic and immunocompetent cells. J Natl Cancer Inst. 1979 Apr;62(4):975–981. [PubMed] [Google Scholar]
  43. Shestowsky W., Fallavollita L., Brodt P. A monoclonal antibody to Lewis lung carcinoma variant H-59 identifies a plasma membrane protein with apparent relevance to lymph node adhesion and metastasis. Cancer Res. 1990 Mar 15;50(6):1948–1953. [PubMed] [Google Scholar]
  44. Testa J. E. Loss of the metastatic phenotype by a human epidermoid carcinoma cell line, HEp-3, is accompanied by increased expression of tissue inhibitor of metalloproteinase 2. Cancer Res. 1992 Oct 15;52(20):5597–5603. [PubMed] [Google Scholar]
  45. Wang J., Fallavollita L., Brodt P. Identification of an Mr 64,000 plasma membrane glycoprotein mediating adhesion of tumor H-59 cells to hepatocytes. Cancer Res. 1991 Jul 1;51(13):3578–3584. [PubMed] [Google Scholar]
  46. Williams C. V., Stechmann C. L., McLoon S. C. Subtractive immunization techniques for the production of monoclonal antibodies to rare antigens. Biotechniques. 1992 Jun;12(6):842–847. [PubMed] [Google Scholar]
  47. Zhu D., Cheng C. F., Pauli B. U. Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis. J Clin Invest. 1992 Jun;89(6):1718–1724. doi: 10.1172/JCI115773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES