Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Sep 2;122(6):1267–1276. doi: 10.1083/jcb.122.6.1267

Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock

PMCID: PMC2119851  PMID: 8376462

Abstract

There is circumstantial evidence that protein denaturation occurs in cells during heat shock at hyperthermic temperatures and that denatured or damaged protein is the primary inducer of the heat shock response. However, there is no direct evidence regarding the extent of denaturation of normal cellular proteins during heat shock. Differential scanning calorimetry (DSC) is the most direct method of monitoring protein denaturation or unfolding. Due to the fundamental parameter measured, heat flow, DSC can be used to detect and quantitate endothermic transitions in complex structures such as isolated organelles and even intact cells. DSC profiles with common features are obtained for isolated rat hepatocytes, liver homogenate, and Chinese hamster lung V79 fibroblasts. Five main transitions (A-E), several of which are resolvable into subcomponents, are observed with transition temperatures (Tm) of 45-98 degrees C. The onset temperature is approximately 40 degrees C, but some transitions may extend as low as 37-38 degrees C. In addition to acting as the primary signal for heat shock protein synthesis, the inactivation of critical proteins may lead to cell death. Critical target analysis implies that the rate limiting step of cell killing for V79 cells is the inactivation of a protein with Tm = 46 degrees C within the A transition. Isolated microsomal membranes, mitochondria, nuclei, and a cytosolic fraction from rat liver have distinct DSC profiles that contribute to different peaks in the profile for intact hepatocytes. Thus, the DSC profiles for intact cells appears to be the sum of the profiles of all subcellular organelles and components. The presence of endothermic transitions in the isolated organelles is strong evidence that they are due to protein denaturation. Each isolated organelle has an onset for denaturation near 40 degrees C and contains thermolabile proteins denaturing at the predicted Tm (46 degrees C) for the critical target. The extent of denaturation at any temperature can be approximately by the fractional calorimetric enthalpy. After scanning to 45 degrees C at 1 degree C/min and immediately cooling, a relatively mild heat shock, an estimated fraction denaturation of 4-7% is found in hepatocytes, V79 cells, and the isolated organelles other than nuclei, which undergo only 1% denaturation because of the high thermostability of chromatin. Thus, thermolabile proteins appear to be present in all cellular organelles and components, and protein denaturation is widespread and extensive after even mild heat shock.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahern T. J., Klibanov A. M. The mechanisms of irreversible enzyme inactivation at 100C. Science. 1985 Jun 14;228(4705):1280–1284. doi: 10.1126/science.4001942. [DOI] [PubMed] [Google Scholar]
  2. Ananthan J., Goldberg A. L., Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 1986 Apr 25;232(4749):522–524. doi: 10.1126/science.3083508. [DOI] [PubMed] [Google Scholar]
  3. Borrelli M. J., Lee Y. J., Frey H. E., Ofenstein J. P., Lepock J. R. Cycloheximide increases the thermostability of proteins in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1991 May 31;177(1):575–581. doi: 10.1016/0006-291x(91)92022-c. [DOI] [PubMed] [Google Scholar]
  4. Borrelli M. J., Stafford D. M., Rausch C. M., Lepock J. R., Lee Y. J., Corry P. M. Reduction of levels of nuclear-associated protein in heated cells by cycloheximide, D2O, and thermotolerance. Radiat Res. 1992 Aug;131(2):204–213. [PubMed] [Google Scholar]
  5. Brandts J. F., Erickson L., Lysko K., Schwartz A. T., Taverna R. D. Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. Biochemistry. 1977 Jul 26;16(15):3450–3454. doi: 10.1021/bi00634a024. [DOI] [PubMed] [Google Scholar]
  6. Burgman P. W., Konings A. W. Heat induced protein denaturation in the particulate fraction of HeLa S3 cells: effect of thermotolerance. J Cell Physiol. 1992 Oct;153(1):88–94. doi: 10.1002/jcp.1041530112. [DOI] [PubMed] [Google Scholar]
  7. Craig E. A., Gross C. A. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991 Apr;16(4):135–140. doi: 10.1016/0968-0004(91)90055-z. [DOI] [PubMed] [Google Scholar]
  8. Dewey W. C. Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat Res. 1989 Nov;120(2):191–204. [PubMed] [Google Scholar]
  9. DiDomenico B. J., Bugaisky G. E., Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell. 1982 Dec;31(3 Pt 2):593–603. doi: 10.1016/0092-8674(82)90315-4. [DOI] [PubMed] [Google Scholar]
  10. Edington B. V., Whelan S. A., Hightower L. E. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol. 1989 May;139(2):219–228. doi: 10.1002/jcp.1041390202. [DOI] [PubMed] [Google Scholar]
  11. Goff S. A., Goldberg A. L. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell. 1985 Jun;41(2):587–595. doi: 10.1016/s0092-8674(85)80031-3. [DOI] [PubMed] [Google Scholar]
  12. Heynen M., Frey H. E., Kruuv J., Lepock J. R. Protein degradation in CHL V79 cells during and after exposure to 43 degrees C. Radiat Res. 1989 Jul;119(1):73–87. [PubMed] [Google Scholar]
  13. Lepock J. R., Cheng K. H., Al-Qysi H., Kruuv J. Thermotropic lipid and protein transitions in chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol. 1983 Jun;61(6):421–427. doi: 10.1139/o83-057. [DOI] [PubMed] [Google Scholar]
  14. Lepock J. R., Cheng K. H., Al-Qysi H., Sim I., Koch C. J., Kruuv J. Hyperthermia-induced inhibition of respiration and mitochondrial protein denaturation in CHL cells. Int J Hyperthermia. 1987 Mar-Apr;3(2):123–132. doi: 10.3109/02656738709140380. [DOI] [PubMed] [Google Scholar]
  15. Lepock J. R., Frey H. E., Bayne H., Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim Biophys Acta. 1989 Apr 14;980(2):191–201. doi: 10.1016/0005-2736(89)90399-4. [DOI] [PubMed] [Google Scholar]
  16. Lepock J. R., Frey H. E., Heynen M. P., Nishio J., Waters B., Ritchie K. P., Kruuv J. Increased thermostability of thermotolerant CHL V79 cells as determined by differential scanning calorimetry. J Cell Physiol. 1990 Mar;142(3):628–634. doi: 10.1002/jcp.1041420324. [DOI] [PubMed] [Google Scholar]
  17. Lepock J. R., Frey H. E., Rodahl A. M., Kruuv J. Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol. 1988 Oct;137(1):14–24. doi: 10.1002/jcp.1041370103. [DOI] [PubMed] [Google Scholar]
  18. Li G. C., Laszlo A. Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. J Cell Physiol. 1985 Jan;122(1):91–97. doi: 10.1002/jcp.1041220114. [DOI] [PubMed] [Google Scholar]
  19. Lysko K. A., Carlson R., Taverna R., Snow J., Brandts J. F. Protein involvement in structural transition of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry. 1981 Sep 15;20(19):5570–5576. doi: 10.1021/bi00522a034. [DOI] [PubMed] [Google Scholar]
  20. Malhotra A., Kruuv J., Lepock J. R. Sensitization of rat hepatocytes to hyperthermia by calcium. J Cell Physiol. 1986 Aug;128(2):279–284. doi: 10.1002/jcp.1041280220. [DOI] [PubMed] [Google Scholar]
  21. Parag H. A., Raboy B., Kulka R. G. Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J. 1987 Jan;6(1):55–61. doi: 10.1002/j.1460-2075.1987.tb04718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parsell D. A., Sauer R. T. Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev. 1989 Aug;3(8):1226–1232. doi: 10.1101/gad.3.8.1226. [DOI] [PubMed] [Google Scholar]
  23. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  24. Ross P. D., Hofrichter J., Eaton W. A. Calorimetric and optical characterization of sickle cell hemoglobin gelation. J Mol Biol. 1975 Aug 5;96(2):239–253. doi: 10.1016/0022-2836(75)90345-9. [DOI] [PubMed] [Google Scholar]
  25. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Touchette N. A., Anton E., Cole R. D. A higher order chromatin structure that is lost during differentiation of mouse neuroblastoma cells. J Biol Chem. 1986 Feb 15;261(5):2185–2188. [PubMed] [Google Scholar]
  27. Westra A., Dewey W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(5):467–477. doi: 10.1080/09553007114550601. [DOI] [PubMed] [Google Scholar]
  28. Zale S. E., Klibanov A. M. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry. 1986 Sep 23;25(19):5432–5444. doi: 10.1021/bi00367a014. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES