Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Dec 1;123(5):1107–1117. doi: 10.1083/jcb.123.5.1107

Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation

PMCID: PMC2119875  PMID: 8245121

Abstract

The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. Methods for visualization of the LDL pathway in cultured human fibroblasts. Methods Enzymol. 1986;129:201–216. doi: 10.1016/0076-6879(86)29070-9. [DOI] [PubMed] [Google Scholar]
  2. Backer J. M., King G. L. Regulation of receptor-mediated endocytosis by phorbol esters. Biochem Pharmacol. 1991 May 1;41(9):1267–1277. doi: 10.1016/0006-2952(91)90097-o. [DOI] [PubMed] [Google Scholar]
  3. Bansal A., Gierasch L. M. The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell. 1991 Dec 20;67(6):1195–1201. doi: 10.1016/0092-8674(91)90295-a. [DOI] [PubMed] [Google Scholar]
  4. Basu S. K., Goldstein J. L., Anderson R. G., Brown M. S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
  5. Beisiegel U., Schneider W. J., Goldstein J. L., Anderson R. G., Brown M. S. Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. J Biol Chem. 1981 Nov 25;256(22):11923–11931. [PubMed] [Google Scholar]
  6. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  7. DiPaola M., Keith C. H., Feldman D., Tycko B., Maxfield F. R. Loss of alpha 2-macroglobulin and epidermal growth factor surface binding induced by phenothiazines and naphthalene sulfonamides. J Cell Physiol. 1984 Feb;118(2):193–202. doi: 10.1002/jcp.1041180212. [DOI] [PubMed] [Google Scholar]
  8. Dunn W. A., Hubbard A. L., Aronson N. N., Jr Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem. 1980 Jun 25;255(12):5971–5978. [PubMed] [Google Scholar]
  9. Eberle W., Sander C., Klaus W., Schmidt B., von Figura K., Peters C. The essential tyrosine of the internalization signal in lysosomal acid phosphatase is part of a beta turn. Cell. 1991 Dec 20;67(6):1203–1209. doi: 10.1016/0092-8674(91)90296-b. [DOI] [PubMed] [Google Scholar]
  10. Fisher G. W., Rebhun L. I. Sea urchin egg cortical granule exocytosis is followed by a burst of membrane retrieval via uptake into coated vesicles. Dev Biol. 1983 Oct;99(2):456–472. doi: 10.1016/0012-1606(83)90295-6. [DOI] [PubMed] [Google Scholar]
  11. Geuze H. J., Slot J. W., Strous G. J., Peppard J., von Figura K., Hasilik A., Schwartz A. L. Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell. 1984 May;37(1):195–204. doi: 10.1016/0092-8674(84)90315-5. [DOI] [PubMed] [Google Scholar]
  12. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  13. Goud B., Huet C., Louvard D. Assembled and unassembled pools of clathrin: a quantitative study using an enzyme immunoassay. J Cell Biol. 1985 Feb;100(2):521–527. doi: 10.1083/jcb.100.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grasso J. A., Bruno M., Yates A. A., Wei L. T., Epstein P. M. Calmodulin dependence of transferrin receptor recycling in rat reticulocytes. Biochem J. 1990 Feb 15;266(1):261–272. doi: 10.1042/bj2660261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haylett T., Thilo L. Endosome-lysosome fusion at low temperature. J Biol Chem. 1991 May 5;266(13):8322–8327. [PubMed] [Google Scholar]
  16. Heuser J. E., Keen J. Deep-etch visualization of proteins involved in clathrin assembly. J Cell Biol. 1988 Sep;107(3):877–886. doi: 10.1083/jcb.107.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunt R. C., Marshall-Carlson L. Internalization and recycling of transferrin and its receptor. Effect of trifluoperazine on recycling in human erythroleukemic cells. J Biol Chem. 1986 Mar 15;261(8):3681–3686. [PubMed] [Google Scholar]
  18. Iacopetta B. J., Rothenberger S., Kühn L. C. A role for the cytoplasmic domain in transferrin receptor sorting and coated pit formation during endocytosis. Cell. 1988 Aug 12;54(4):485–489. doi: 10.1016/0092-8674(88)90069-4. [DOI] [PubMed] [Google Scholar]
  19. Keen J. H., Beck K. A. Identification of the clathrin-binding domain of assembly protein AP-2. Biochem Biophys Res Commun. 1989 Jan 16;158(1):17–23. doi: 10.1016/s0006-291x(89)80170-6. [DOI] [PubMed] [Google Scholar]
  20. Keen J. H. Clathrin and associated assembly and disassembly proteins. Annu Rev Biochem. 1990;59:415–438. doi: 10.1146/annurev.bi.59.070190.002215. [DOI] [PubMed] [Google Scholar]
  21. Liscovitch M., Lavie Y. Sphingoid bases as endogenous cationic amphiphilic "drugs". Biochem Pharmacol. 1991 Nov 6;42(11):2071–2075. doi: 10.1016/0006-2952(91)90340-b. [DOI] [PubMed] [Google Scholar]
  22. Mahaffey D. T., Peeler J. S., Brodsky F. M., Anderson R. G. Clathrin-coated pits contain an integral membrane protein that binds the AP-2 subunit with high affinity. J Biol Chem. 1990 Sep 25;265(27):16514–16520. [PubMed] [Google Scholar]
  23. Maycox P. R., Link E., Reetz A., Morris S. A., Jahn R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol. 1992 Sep;118(6):1379–1388. doi: 10.1083/jcb.118.6.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller K., Shipman M., Trowbridge I. S., Hopkins C. R. Transferrin receptors promote the formation of clathrin lattices. Cell. 1991 May 17;65(4):621–632. doi: 10.1016/0092-8674(91)90094-f. [DOI] [PubMed] [Google Scholar]
  25. O'Halloran T. J., Anderson R. G. Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J Cell Biol. 1992 Sep;118(6):1371–1377. doi: 10.1083/jcb.118.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pathak R. K., Anderson R. G. Use of dinitrophenol-IgG conjugates to detect sparse antigens by immunogold labeling. J Histochem Cytochem. 1989 Jan;37(1):69–74. doi: 10.1177/37.1.2491753. [DOI] [PubMed] [Google Scholar]
  27. Pearse B. M., Robinson M. S. Clathrin, adaptors, and sorting. Annu Rev Cell Biol. 1990;6:151–171. doi: 10.1146/annurev.cb.06.110190.001055. [DOI] [PubMed] [Google Scholar]
  28. Peeler J. S., Donzell W. C., Anderson R. G. The appendage domain of the AP-2 subunit is not required for assembly or invagination of clathrin-coated pits. J Cell Biol. 1993 Jan;120(1):47–54. doi: 10.1083/jcb.120.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robinson M. S. 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies. J Cell Biol. 1987 Apr;104(4):887–895. doi: 10.1083/jcb.104.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sadahira Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9686–9690. doi: 10.1073/pnas.89.20.9686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seaman M. N., Ball C. L., Robinson M. S. Targeting and mistargeting of plasma membrane adaptors in vitro. J Cell Biol. 1993 Dec;123(5):1093–1105. doi: 10.1083/jcb.123.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
  33. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  34. Virshup D. M., Bennett V. Clathrin-coated vesicle assembly polypeptides: physical properties and reconstitution studies with brain membranes. J Cell Biol. 1988 Jan;106(1):39–50. doi: 10.1083/jcb.106.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES