Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Dec 1;123(5):1237–1248. doi: 10.1083/jcb.123.5.1237

ATP-dependent degradation of a mutant serine: pyruvate/alanine:glyoxylate aminotransferase in a primary hyperoxaluria type 1 case

PMCID: PMC2119878  PMID: 8245128

Abstract

Primary hyperoxaluria type 1 (PH 1), an inborn error of glyoxylate metabolism characterized by excessive synthesis of oxalate and glycolate, is caused by a defect in serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT). This enzyme is peroxisomal in human liver. Recently, we cloned SPT/AGT-cDNA from a PH 1 case, and demonstrated a point mutation of T to C in the coding region of the SPT/AGT gene encoding a Ser to Pro substitution at residue 205 (Nishiyama, K., T. Funai, R. Katafuchi, F. Hattori, K. Onoyama, and A. Ichiyama. 1991. Biochem. Biophys. Res. Commun. 176:1093-1099). In the liver of this patient, SPT/AGT was very low with respect to not only activity but also protein detectable on Western blot and immunoprecipitation analyses. Immunocytochemically detectable SPT/AGT labeling was also low, although it was detected predominantly in peroxisomes. On the other hand, the level of translatable SPT/AGT-mRNA was higher than normal, indicating that SPT/AGT had been synthesized in the patient's liver at least as effectively as in normal liver. Rapid degradation of the mutant SPT/AGT was then demonstrated in transfected COS cells and transformed Escherichia coli, accounting for the low level of immunodetectable mutant SPT/AGT in the patient's liver. The mutant SPT/AGT was also degraded much faster than normal in an in vitro system with a rabbit reticulocyte extract, and the degradation in vitro was ATP dependent. These results indicate that a single amino acid substitution in SPT/AGT found in the PH1 case leads to a reduced half- life of this protein. It appears that the mutant SPT/AGT is recognized in cells as an abnormal protein to be eliminated by degradation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexson S. E., Fujiki Y., Shio H., Lazarow P. B. Partial disassembly of peroxisomes. J Cell Biol. 1985 Jul;101(1):294–304. doi: 10.1083/jcb.101.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alwine J. C., Kemp D. J., Stark G. R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350–5354. doi: 10.1073/pnas.74.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bendayan M., Roth J., Perrelet A., Orci L. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem. 1980 Feb;28(2):149–160. doi: 10.1177/28.2.7354212. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Danpure C. J., Cooper P. J., Wise P. J., Jennings P. R. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989 Apr;108(4):1345–1352. doi: 10.1083/jcb.108.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Danpure C. J., Guttridge K. M., Fryer P., Jennings P. R., Allsop J., Purdue P. E. Subcellular distribution of hepatic alanine:glyoxylate aminotransferase in various mammalian species. J Cell Sci. 1990 Dec;97(Pt 4):669–678. doi: 10.1242/jcs.97.4.669. [DOI] [PubMed] [Google Scholar]
  7. Danpure C. J., Jennings P. R. Further studies on the activity and subcellular distribution of alanine:glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1. Clin Sci (Lond) 1988 Sep;75(3):315–322. doi: 10.1042/cs0750315. [DOI] [PubMed] [Google Scholar]
  8. Danpure C. J., Jennings P. R. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986 May 26;201(1):20–24. doi: 10.1016/0014-5793(86)80563-4. [DOI] [PubMed] [Google Scholar]
  9. Danpure C. J. Molecular and clinical heterogeneity in primary hyperoxaluria type 1. Am J Kidney Dis. 1991 Apr;17(4):366–369. doi: 10.1016/s0272-6386(12)80624-x. [DOI] [PubMed] [Google Scholar]
  10. Datta A., de Haro C., Ochoa S. Translational control by hemin is due to binding to cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1148–1152. doi: 10.1073/pnas.75.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunbar B. S., Schwoebel E. D. Preparation of polyclonal antibodies. Methods Enzymol. 1990;182:663–670. doi: 10.1016/0076-6879(90)82051-3. [DOI] [PubMed] [Google Scholar]
  12. Etlinger J. D., Goldberg A. L. Control of protein degradation in reticulocytes and reticulocyte extracts by hemin. J Biol Chem. 1980 May 25;255(10):4563–4568. [PubMed] [Google Scholar]
  13. Fagan J. M., Waxman L., Goldberg A. L. Red blood cells contain a pathway for the degradation of oxidant-damaged hemoglobin that does not require ATP or ubiquitin. J Biol Chem. 1986 May 5;261(13):5705–5713. [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  16. Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  17. Haas A. L., Rose I. A. Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6845–6848. doi: 10.1073/pnas.78.11.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  19. Lazarow P. B., Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol. 1985;1:489–530. doi: 10.1146/annurev.cb.01.110185.002421. [DOI] [PubMed] [Google Scholar]
  20. LeHir M., Herzog V., Fahimi H. D. Cytochemical detection of catalase with 3,3'-diaminobenzidine. A quantitative reinvestigation of the optimal conditions. Histochemistry. 1979 Nov;64(1):51–66. doi: 10.1007/BF00493354. [DOI] [PubMed] [Google Scholar]
  21. Matthews W., Driscoll J., Tanaka K., Ichihara A., Goldberg A. L. Involvement of the proteasome in various degradative processes in mammalian cells. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2597–2601. doi: 10.1073/pnas.86.8.2597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mori M., Miura S., Tatibana M., Cohen P. P. Cell-free synthesis and processing of a putative precursor for mitochondrial carbamyl phosphate synthetase I of rat liver. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5071–5075. doi: 10.1073/pnas.76.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mori M., Oda T., Nishiyama K., Serikawa T., Yamada J., Ichiyama A. A single serine:pyruvate aminotransferase gene on rat chromosome 9q34-q36. Genomics. 1992 Jul;13(3):686–689. doi: 10.1016/0888-7543(92)90142-f. [DOI] [PubMed] [Google Scholar]
  25. Murakami Y., Matsufuji S., Kameji T., Hayashi S., Igarashi K., Tamura T., Tanaka K., Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992 Dec 10;360(6404):597–599. doi: 10.1038/360597a0. [DOI] [PubMed] [Google Scholar]
  26. Nakajima-Iijima S., Hamada H., Reddy P., Kakunaga T. Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6133–6137. doi: 10.1073/pnas.82.18.6133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nishiyama K., Berstein G., Oda T., Ichiyama A. Cloning and nucleotide sequence of cDNA encoding human liver serine-pyruvate aminotransferase. Eur J Biochem. 1990 Nov 26;194(1):9–18. doi: 10.1111/j.1432-1033.1990.tb19420.x. [DOI] [PubMed] [Google Scholar]
  28. Nishiyama K., Funai T., Katafuchi R., Hattori F., Onoyama K., Ichiyama A. Primary hyperoxaluria type I due to a point mutation of T to C in the coding region of the serine:pyruvate aminotransferase gene. Biochem Biophys Res Commun. 1991 May 15;176(3):1093–1099. doi: 10.1016/0006-291x(91)90396-o. [DOI] [PubMed] [Google Scholar]
  29. Nishizawa M., Okazaki K., Furuno N., Watanabe N., Sagata N. The 'second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J. 1992 Jul;11(7):2433–2446. doi: 10.1002/j.1460-2075.1992.tb05308.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Noguchi T., Minatogawa Y., Takada Y., Okuno E., Kido R. Subcellular distribution of pyruvate (glyoxylate) aminotransferases in rat liver. Biochem J. 1978 Jan 15;170(1):173–175. doi: 10.1042/bj1700173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noguchi T., Takada Y. Peroxisomal localization of serine:pyruvate aminotransferase in human liver. J Biol Chem. 1978 Nov 10;253(21):7598–7600. [PubMed] [Google Scholar]
  32. Oda T., Funai T., Ichiyama A. Generation from a single gene of two mRNAs that encode the mitochondrial and peroxisomal serine:pyruvate aminotransferase of rat liver. J Biol Chem. 1990 May 5;265(13):7513–7519. [PubMed] [Google Scholar]
  33. Oda T., Ichiyama A., Miura S., Mori M., Tatibana M. In vitro synthesis of a putative precursor of serine: pyruvate aminotransferase of rat liver mitochondria. Biochem Biophys Res Commun. 1981 Sep 16;102(1):568–573. doi: 10.1016/0006-291x(81)91557-6. [DOI] [PubMed] [Google Scholar]
  34. Oda T., Yanagisawa M., Ichiyama A. Induction of serum: pyruvate aminotransferase in rat liver organelles by glucagon and a high-protein diet. J Biochem. 1982 Jan;91(1):219–232. doi: 10.1093/oxfordjournals.jbchem.a133679. [DOI] [PubMed] [Google Scholar]
  35. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  36. Purdue P. E., Lumb M. J., Allsop J., Minatogawa Y., Danpure C. J. A glycine-to-glutamate substitution abolishes alanine:glyoxylate aminotransferase catalytic activity in a subset of patients with primary hyperoxaluria type 1. Genomics. 1992 May;13(1):215–218. doi: 10.1016/0888-7543(92)90225-h. [DOI] [PubMed] [Google Scholar]
  37. Ranu R. S., London I. M., Das A., Dasgupta A., Majumdar A., Ralston R., Roy R., Gupta N. K. Regulation of protein synthesis in rabbit reticulocyte lysates by the heme-regulated protein kinase: inhibition of interaction of Met-tRNAfMet binding factor with another initiation factor in formation of Met-tRNAfMet.40S ribosomal subunit complexes. Proc Natl Acad Sci U S A. 1978 Feb;75(2):745–749. doi: 10.1073/pnas.75.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rechsteiner M. Natural substrates of the ubiquitin proteolytic pathway. Cell. 1991 Aug 23;66(4):615–618. doi: 10.1016/0092-8674(91)90104-7. [DOI] [PubMed] [Google Scholar]
  39. Tahara S. M., Traugh J. A., Sharp S. B., Lundak T. S., Safer B., Merrick W. C. Effect of hemin on site-specific phosphorylation of eukaryotic initiation factor 2. Proc Natl Acad Sci U S A. 1978 Feb;75(2):789–793. doi: 10.1073/pnas.75.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takada Y., Kaneko N., Esumi H., Purdue P. E., Danpure C. J. Human peroxisomal L-alanine: glyoxylate aminotransferase. Evolutionary loss of a mitochondrial targeting signal by point mutation of the initiation codon. Biochem J. 1990 Jun 1;268(2):517–520. doi: 10.1042/bj2680517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takada Y., Noguchi T. Subcellular distribution, and physical and immunological properties of hepatic alanine: glyoxylate aminotransferase isoenzymes in different mammalian species. Comp Biochem Physiol B. 1982;72(4):597–604. doi: 10.1016/0305-0491(82)90512-0. [DOI] [PubMed] [Google Scholar]
  42. Tanaka K., Tamura T., Yoshimura T., Ichihara A. Proteasomes: protein and gene structures. New Biol. 1992 Mar;4(3):173–187. [PubMed] [Google Scholar]
  43. Tanaka K., Waxman L., Goldberg A. L. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J Cell Biol. 1983 Jun;96(6):1580–1585. doi: 10.1083/jcb.96.6.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wise P. J., Danpure C. J., Jennings P. R. Immunological heterogeneity of hepatic alanine:glyoxylate aminotransferase in primary hyperoxaluria type 1. FEBS Lett. 1987 Sep 28;222(1):17–20. doi: 10.1016/0014-5793(87)80183-7. [DOI] [PubMed] [Google Scholar]
  45. Yokota S. Cytochemical and immunocytochemical study on the peroxisomes of rat liver after administration of a hypolipidemic drug, MLM-160. Eur J Cell Biol. 1990 Oct;53(1):112–121. [PubMed] [Google Scholar]
  46. Yokota S. Quantitative immunocytochemical studies on differential induction of serine:pyruvate aminotransferase in mitochondria and peroxisomes of rat liver cells by administration of glucagon or di-(2-ethylhexyl)phthalate. Histochemistry. 1986;85(2):145–155. doi: 10.1007/BF00491762. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES