Abstract
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvan P., Castle D. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol. 1992 Nov;2(11):327–331. doi: 10.1016/0962-8924(92)90181-l. [DOI] [PubMed] [Google Scholar]
- Arvan P., Kuliawat R., Prabakaran D., Zavacki A. M., Elahi D., Wang S., Pilkey D. Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem. 1991 Aug 5;266(22):14171–14174. [PubMed] [Google Scholar]
- Burgess T. L., Craik C. S., Matsuuchi L., Kelly R. B. In vitro mutagenesis of trypsinogen: role of the amino terminus in intracellular protein targeting to secretory granules. J Cell Biol. 1987 Aug;105(2):659–668. doi: 10.1083/jcb.105.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
- Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chevrier D., Fournier H., Nault C., Zollinger M., Crine P., Boileau G. Expression of porcine pro-opiomelanocortin in mouse neuroblastoma (Neuro2A) cells: targeting of the foreign neuropeptide to dense-core vesicles. Mol Cell Endocrinol. 1991 Aug;79(1-3):109–118. doi: 10.1016/0303-7207(91)90101-w. [DOI] [PubMed] [Google Scholar]
- Chidgey M. A. Protein targeting to dense-core secretory granules. Bioessays. 1993 May;15(5):317–321. doi: 10.1002/bies.950150505. [DOI] [PubMed] [Google Scholar]
- Chu W. N., Baxter J. D., Reudelhuber T. L. A targeting sequence for dense secretory granules resides in the active renin protein moiety of human preprorenin. Mol Endocrinol. 1990 Dec;4(12):1905–1913. doi: 10.1210/mend-4-12-1905. [DOI] [PubMed] [Google Scholar]
- Devi L., Gupta P., Douglass J. Expression and posttranslational processing of preprodynorphin complementary DNA in the mouse anterior pituitary cell line AtT-20. Mol Endocrinol. 1989 Nov;3(11):1852–1860. doi: 10.1210/mend-3-11-1852. [DOI] [PubMed] [Google Scholar]
- Disdier M., Morrissey J. H., Fugate R. D., Bainton D. F., McEver R. P. Cytoplasmic domain of P-selectin (CD62) contains the signal for sorting into the regulated secretory pathway. Mol Biol Cell. 1992 Mar;3(3):309–321. doi: 10.1091/mbc.3.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eipper B. A., Milgram S. L., Husten E. J., Yun H. Y., Mains R. E. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci. 1993 Apr;2(4):489–497. doi: 10.1002/pro.5560020401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eipper B. A., Stoffers D. A., Mains R. E. The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci. 1992;15:57–85. doi: 10.1146/annurev.ne.15.030192.000421. [DOI] [PubMed] [Google Scholar]
- Griffiths G., Pfeiffer S., Simons K., Matlin K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J Cell Biol. 1985 Sep;101(3):949–964. doi: 10.1083/jcb.101.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimes M., Kelly R. B. Intermediates in the constitutive and regulated secretory pathways released in vitro from semi-intact cells. J Cell Biol. 1992 May;117(3):539–549. doi: 10.1083/jcb.117.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husten E. J., Tausk F. A., Keutmann H. T., Eipper B. A. Use of endoproteases to identify catalytic domains, linker regions, and functional interactions in soluble peptidylglycine alpha-amidating monooxygenase. J Biol Chem. 1993 May 5;268(13):9709–9717. [PubMed] [Google Scholar]
- Koedam J. A., Cramer E. M., Briend E., Furie B., Furie B. C., Wagner D. D. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol. 1992 Feb;116(3):617–625. doi: 10.1083/jcb.116.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuliawat R., Arvan P. Protein targeting via the "constitutive-like" secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J Cell Biol. 1992 Aug;118(3):521–529. doi: 10.1083/jcb.118.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lapps W., Eng J., Stern A. S., Gubler U. Expression of porcine cholecystokinin cDNA in a murine neuroendocrine cell line. Proteolytic processing, sulfation, and regulated secretion of cholecystokinin peptides. J Biol Chem. 1988 Sep 15;263(26):13456–13462. [PubMed] [Google Scholar]
- Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
- Maltese J. Y., Eipper B. A. Maturation, internalization, and turnover of soluble and membrane proteins associated with atrial myocyte secretory granules. Endocrinology. 1993 Dec;133(6):2579–2587. doi: 10.1210/endo.133.6.8243281. [DOI] [PubMed] [Google Scholar]
- Matsuuchi L., Kelly R. B. Constitutive and basal secretion from the endocrine cell line, AtT-20. J Cell Biol. 1991 Mar;112(5):843–852. doi: 10.1083/jcb.112.5.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milgram S. L., Johnson R. C., Mains R. E. Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules. J Cell Biol. 1992 May;117(4):717–728. doi: 10.1083/jcb.117.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milgram S. L., Mains R. E., Eipper B. A. COOH-terminal signals mediate the trafficking of a peptide processing enzyme in endocrine cells. J Cell Biol. 1993 Apr;121(1):23–36. doi: 10.1083/jcb.121.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore H. P., Walker M. D., Lee F., Kelly R. B. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell. 1983 Dec;35(2 Pt 1):531–538. doi: 10.1016/0092-8674(83)90187-3. [DOI] [PubMed] [Google Scholar]
- Nagahama M., Nakayama K., Murakami K. Effects of propeptide deletion on human renin secretion from mouse pituitary AtT-20 cells. FEBS Lett. 1990 May 7;264(1):67–70. doi: 10.1016/0014-5793(90)80766-c. [DOI] [PubMed] [Google Scholar]
- Orci L., Ravazzola M., Amherdt M., Perrelet A., Powell S. K., Quinn D. L., Moore H. P. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell. 1987 Dec 24;51(6):1039–1051. doi: 10.1016/0092-8674(87)90590-3. [DOI] [PubMed] [Google Scholar]
- Palmer D. J., Christie D. L. Identification of molecular aggregates containing glycoproteins III, J, K (carboxypeptidase H), and H (Kex2-related proteases) in the soluble and membrane fractions of adrenal medullary chromaffin granules. J Biol Chem. 1992 Oct 5;267(28):19806–19812. [PubMed] [Google Scholar]
- Powell S. K., Orci L., Craik C. S., Moore H. P. Efficient targeting to storage granules of human proinsulins with altered propeptide domain. J Cell Biol. 1988 Jun;106(6):1843–1851. doi: 10.1083/jcb.106.6.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaves B. J., Dannies P. S. Is a sorting signal necessary to package proteins into secretory granules? Mol Cell Endocrinol. 1991 Aug;79(1-3):C141–C145. doi: 10.1016/0303-7207(91)90085-7. [DOI] [PubMed] [Google Scholar]
- Régnier-Vigouroux A., Tooze S. A., Huttner W. B. Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J. 1991 Dec;10(12):3589–3601. doi: 10.1002/j.1460-2075.1991.tb04925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984 Sep;38(2):535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
- Sevarino K. A., Stork P., Ventimiglia R., Mandel G., Goodman R. H. Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity. Cell. 1989 Apr 7;57(1):11–19. doi: 10.1016/0092-8674(89)90167-0. [DOI] [PubMed] [Google Scholar]
- Sossin W. S., Fisher J. M., Scheller R. H. Sorting within the regulated secretory pathway occurs in the trans-Golgi network. J Cell Biol. 1990 Jan;110(1):1–12. doi: 10.1083/jcb.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tausk F. A., Milgram S. L., Mains R. E., Eipper B. A. Expression of a peptide processing enzyme in cultured cells: truncation mutants reveal a routing domain. Mol Endocrinol. 1992 Dec;6(12):2185–2196. doi: 10.1210/mend.6.12.1491698. [DOI] [PubMed] [Google Scholar]
- Tooze S. A. Biogenesis of secretory granules. Implications arising from the immature secretory granule in the regulated pathway of secretion. FEBS Lett. 1991 Jul 22;285(2):220–224. doi: 10.1016/0014-5793(91)80805-d. [DOI] [PubMed] [Google Scholar]
- Tooze S. A., Flatmark T., Tooze J., Huttner W. B. Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol. 1991 Dec;115(6):1491–1503. doi: 10.1083/jcb.115.6.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner D. D., Saffaripour S., Bonfanti R., Sadler J. E., Cramer E. M., Chapman B., Mayadas T. N. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell. 1991 Jan 25;64(2):403–413. doi: 10.1016/0092-8674(91)90648-i. [DOI] [PubMed] [Google Scholar]
- Yun H. Y., Johnson R. C., Mains R. E., Eipper B. A. Topological switching of the COOH-terminal domain of peptidylglycine alpha-amidating monooxygenase by alternative RNA splicing. Arch Biochem Biophys. 1993 Feb 15;301(1):77–84. doi: 10.1006/abbi.1993.1117. [DOI] [PubMed] [Google Scholar]
- von Zastrow M., Castle J. D. Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol. 1987 Dec;105(6 Pt 1):2675–2684. doi: 10.1083/jcb.105.6.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]
