Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Feb 2;124(4):521–536. doi: 10.1083/jcb.124.4.521

Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension

PMCID: PMC2119910  PMID: 8106550

Abstract

In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side- chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone- mediated extension of neuronal processes.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson P., Marshall C. J., Hall A., Tilbrook P. A. Post-translational modifications of p21rho proteins. J Biol Chem. 1992 Oct 5;267(28):20033–20038. [PubMed] [Google Scholar]
  2. Adamson P., Paterson H. F., Hall A. Intracellular localization of the P21rho proteins. J Cell Biol. 1992 Nov;119(3):617–627. doi: 10.1083/jcb.119.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arduini A., Mancinelli G., Radatti G. L., Dottori S., Molajoni F., Ramsay R. R. Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes. J Biol Chem. 1992 Jun 25;267(18):12673–12681. [PubMed] [Google Scholar]
  4. Baier H., Bonhoeffer F. Axon guidance by gradients of a target-derived component. Science. 1992 Jan 24;255(5043):472–475. doi: 10.1126/science.1734526. [DOI] [PubMed] [Google Scholar]
  5. Basi G. S., Jacobson R. D., Virág I., Schilling J., Skene J. H. Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell. 1987 Jun 19;49(6):785–791. doi: 10.1016/0092-8674(87)90616-7. [DOI] [PubMed] [Google Scholar]
  6. Block L. H., Pletscher A. Low-density lipoprotein: an old substance with a new function? Trends Pharmacol Sci. 1988 Jun;9(6):214–216. doi: 10.1016/0165-6147(88)90088-0. [DOI] [PubMed] [Google Scholar]
  7. Bourguignon L. Y., Kalomiris E. L., Lokeshwar V. B. Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem. 1991 Jun 25;266(18):11761–11765. [PubMed] [Google Scholar]
  8. Burn P., Burger M. M. The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid. Science. 1987 Jan 23;235(4787):476–479. doi: 10.1126/science.3099391. [DOI] [PubMed] [Google Scholar]
  9. Burn P., Rotman A., Meyer R. K., Burger M. M. Diacylglycerol in large alpha-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature. 1985 Apr 4;314(6010):469–472. doi: 10.1038/314469a0. [DOI] [PubMed] [Google Scholar]
  10. Buss J. E., Kamps M. P., Sefton B. M. Myristic acid is attached to the transforming protein of Rous sarcoma virus during or immediately after synthesis and is present in both soluble and membrane-bound forms of the protein. Mol Cell Biol. 1984 Dec;4(12):2697–2704. doi: 10.1128/mcb.4.12.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caroni P., Schwab M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron. 1988 Mar;1(1):85–96. doi: 10.1016/0896-6273(88)90212-7. [DOI] [PubMed] [Google Scholar]
  12. Chapman E. R., Estep R. P., Storm D. R. Palmitylation of neuromodulin (GAP-43) is not required for phosphorylation by protein kinase C. J Biol Chem. 1992 Dec 15;267(35):25233–25238. [PubMed] [Google Scholar]
  13. Cheng T. P., Reese T. S. Recycling of plasmalemma in chick tectal growth cones. J Neurosci. 1987 Jun;7(6):1752–1759. doi: 10.1523/JNEUROSCI.07-06-01752.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davies J. A., Cook G. M., Stern C. D., Keynes R. J. Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron. 1990 Jan;4(1):11–20. doi: 10.1016/0896-6273(90)90439-m. [DOI] [PubMed] [Google Scholar]
  15. Dihanich M., Kaser M., Reinhard E., Cunningham D., Monard D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron. 1991 Apr;6(4):575–581. doi: 10.1016/0896-6273(91)90060-d. [DOI] [PubMed] [Google Scholar]
  16. Duksin D., Mahoney W. C. Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem. 1982 Mar 25;257(6):3105–3109. [PubMed] [Google Scholar]
  17. Duksin D., Seiberg M., Mahoney W. C. Inhibition of protein glycosylation and selective cytotoxicity toward virally transformed fibroblasts caused by B3-tunicamycin. Eur J Biochem. 1982 Dec;129(1):77–80. doi: 10.1111/j.1432-1033.1982.tb07022.x. [DOI] [PubMed] [Google Scholar]
  18. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem. 1984;16(1):21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
  19. Fichard A., Verna J. M., Saxod R. Effects of tunicamycin on the avoidance reaction of epidermis by sensory neurites in co-cultures. Int J Dev Neurosci. 1990;8(3):245–254. doi: 10.1016/0736-5748(90)90030-6. [DOI] [PubMed] [Google Scholar]
  20. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldberg D. J., Burmeister D. W. Looking into growth cones. Trends Neurosci. 1989 Dec;12(12):503–506. doi: 10.1016/0166-2236(89)90110-0. [DOI] [PubMed] [Google Scholar]
  22. Gordon-Weeks P. R., Lockerbie R. O. Isolation and partial characterisation of neuronal growth cones from neonatal rat forebrain. Neuroscience. 1984 Sep;13(1):119–136. doi: 10.1016/0306-4522(84)90264-1. [DOI] [PubMed] [Google Scholar]
  23. Gordon-Weeks P. R. The cytoskeletons of isolated, neuronal growth cones. Neuroscience. 1987 Jun;21(3):977–989. doi: 10.1016/0306-4522(87)90052-2. [DOI] [PubMed] [Google Scholar]
  24. Gordon-Weeks P. R., Williamson T. L. Glycoproteins of the growth-cone membrane skeleton. Biochem Soc Trans. 1992 May;20(2):396–398. doi: 10.1042/bst0200396. [DOI] [PubMed] [Google Scholar]
  25. Grand R. J. Acylation of viral and eukaryotic proteins. Biochem J. 1989 Mar 15;258(3):625–638. doi: 10.1042/bj2580625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gutierrez L., Magee A. I. Characterization of an acyltransferase acting on p21N-ras protein in a cell-free system. Biochim Biophys Acta. 1991 Jun 24;1078(2):147–154. doi: 10.1016/0167-4838(91)99003-b. [DOI] [PubMed] [Google Scholar]
  27. Hancock J. F., Paterson H., Marshall C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 1990 Oct 5;63(1):133–139. doi: 10.1016/0092-8674(90)90294-o. [DOI] [PubMed] [Google Scholar]
  28. Handelmann G. E., Boyles J. K., Weisgraber K. H., Mahley R. W., Pitas R. E. Effects of apolipoprotein E, beta-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. J Lipid Res. 1992 Nov;33(11):1677–1688. [PubMed] [Google Scholar]
  29. Harris W. A., Holt C. E., Bonhoeffer F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development. 1987 Sep;101(1):123–133. doi: 10.1242/dev.101.1.123. [DOI] [PubMed] [Google Scholar]
  30. Heacock A. M. Glycoprotein requirement for neurite outgrowth in goldfish retina explants: effects of tunicamycin. Brain Res. 1982 Jun 10;241(2):307–315. doi: 10.1016/0006-8993(82)91068-x. [DOI] [PubMed] [Google Scholar]
  31. Hemming F. W. Control and manipulation of the phosphodolichol pathway of protein N-glycosylation. Biosci Rep. 1982 Apr;2(4):203–221. doi: 10.1007/BF01136719. [DOI] [PubMed] [Google Scholar]
  32. Hess D. T., Patterson S. I., Smith D. S., Skene J. H. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature. 1993 Dec 9;366(6455):562–565. doi: 10.1038/366562a0. [DOI] [PubMed] [Google Scholar]
  33. Hess D. T., Slater T. M., Wilson M. C., Skene J. H. The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci. 1992 Dec;12(12):4634–4641. doi: 10.1523/JNEUROSCI.12-12-04634.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hoffman P. N. Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci. 1989 Mar;9(3):893–897. doi: 10.1523/JNEUROSCI.09-03-00893.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hollenbeck P. J., Bray D. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth. J Cell Biol. 1987 Dec;105(6 Pt 1):2827–2835. doi: 10.1083/jcb.105.6.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Huang E. M. Agonist-enhanced palmitoylation of platelet proteins. Biochim Biophys Acta. 1989 May 10;1011(2-3):134–139. doi: 10.1016/0167-4889(89)90200-0. [DOI] [PubMed] [Google Scholar]
  37. Ignatius M. J., Shooter E. M., Pitas R. E., Mahley R. W. Lipoprotein uptake by neuronal growth cones in vitro. Science. 1987 May 22;236(4804):959–962. doi: 10.1126/science.3576212. [DOI] [PubMed] [Google Scholar]
  38. Jalink K., Moolenaar W. H. Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers. J Cell Biol. 1992 Jul;118(2):411–419. doi: 10.1083/jcb.118.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. James G., Olson E. N. Fatty acylated proteins as components of intracellular signaling pathways. Biochemistry. 1990 Mar 20;29(11):2623–2634. doi: 10.1021/bi00463a001. [DOI] [PubMed] [Google Scholar]
  40. James G., Olson E. N. Identification of a novel fatty acylated protein that partitions between the plasma membrane and cytosol and is deacylated in response to serum and growth factor stimulation. J Biol Chem. 1989 Dec 15;264(35):20998–21006. [PubMed] [Google Scholar]
  41. Jessell T. M. Adhesion molecules and the hierarchy of neural development. Neuron. 1988 Mar;1(1):3–13. doi: 10.1016/0896-6273(88)90204-8. [DOI] [PubMed] [Google Scholar]
  42. Jochen A., Hays J., Lianos E., Hager S. Insulin stimulates fatty acid acylation of adipocyte proteins. Biochem Biophys Res Commun. 1991 Jun 14;177(2):797–801. doi: 10.1016/0006-291x(91)91859-b. [DOI] [PubMed] [Google Scholar]
  43. Juguelin H., Cassagne C. Assay of long-chain acyl-CoAs in a complex reaction mixture. Anal Biochem. 1984 Nov 1;142(2):329–335. doi: 10.1016/0003-2697(84)90472-x. [DOI] [PubMed] [Google Scholar]
  44. Karnik S. S., Ridge K. D., Bhattacharya S., Khorana H. G. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):40–44. doi: 10.1073/pnas.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Keynes R., Cook G. Cell-cell repulsion: clues from the growth cone? Cell. 1990 Aug 24;62(4):609–610. doi: 10.1016/0092-8674(90)90103-l. [DOI] [PubMed] [Google Scholar]
  46. Kuroda Y., Suzuki N., Kataoka T. The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science. 1993 Jan 29;259(5095):683–686. doi: 10.1126/science.8430318. [DOI] [PubMed] [Google Scholar]
  47. Lindsay R. M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci. 1988 Jul;8(7):2394–2405. doi: 10.1523/JNEUROSCI.08-07-02394.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Liu Y. C., Chapman E. R., Storm D. R. Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons. Neuron. 1991 Mar;6(3):411–420. doi: 10.1016/0896-6273(91)90249-y. [DOI] [PubMed] [Google Scholar]
  49. Lohof A. M., Quillan M., Dan Y., Poo M. M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci. 1992 Apr;12(4):1253–1261. doi: 10.1523/JNEUROSCI.12-04-01253.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Magee A. I., Gutierrez L., McKay I. A., Marshall C. J., Hall A. Dynamic fatty acylation of p21N-ras. EMBO J. 1987 Nov;6(11):3353–3357. doi: 10.1002/j.1460-2075.1987.tb02656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Mahoney W. C., Duksin D. Separation of tunicamycin homologues by reversed-phase high-performance liquid chromatography. J Chromatogr. 1980 Oct 24;198(4):506–510. doi: 10.1016/s0021-9673(00)80521-x. [DOI] [PubMed] [Google Scholar]
  52. Mattoo A. K., Edelman M. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1497–1501. doi: 10.1073/pnas.84.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Molaparast-Saless F., Shrago E., Spennetta T. L., Donatello S., Kneeland L. M., Nellis S. H., Liedtke A. J. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle. Lipids. 1988 May;23(5):490–492. doi: 10.1007/BF02535525. [DOI] [PubMed] [Google Scholar]
  54. Moorman S. J., Hume R. I. Growth cones of chick sympathetic preganglionic neurons in vitro interact with other neurons in a cell-specific manner. J Neurosci. 1990 Sep;10(9):3158–3163. doi: 10.1523/JNEUROSCI.10-09-03158.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Moss D. J., Fernyhough P., Chapman K., Baizer L., Bray D., Allsopp T. Chicken growth-associated protein GAP-43 is tightly bound to the actin-rich neuronal membrane skeleton. J Neurochem. 1990 Mar;54(3):729–736. doi: 10.1111/j.1471-4159.1990.tb02312.x. [DOI] [PubMed] [Google Scholar]
  56. Mouillac B., Caron M., Bonin H., Dennis M., Bouvier M. Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem. 1992 Oct 25;267(30):21733–21737. [PubMed] [Google Scholar]
  57. Mundy D. I., Warren G. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein. J Cell Biol. 1992 Jan;116(1):135–146. doi: 10.1083/jcb.116.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Newman C. M., Magee A. I. Posttranslational processing of the ras superfamily of small GTP-binding proteins. Biochim Biophys Acta. 1993 May 25;1155(1):79–96. doi: 10.1016/0304-419x(93)90023-6. [DOI] [PubMed] [Google Scholar]
  59. Okabe S., Hirokawa N. Actin dynamics in growth cones. J Neurosci. 1991 Jul;11(7):1918–1929. doi: 10.1523/JNEUROSCI.11-07-01918.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Okubo K., Hamasaki N., Hara K., Kageura M. Palmitoylation of cysteine 69 from the COOH-terminal of band 3 protein in the human erythrocyte membrane. Acylation occurs in the middle of the consensus sequence of F--I-IICLAVL found in band 3 protein and G2 protein of Rift Valley fever virus. J Biol Chem. 1991 Sep 5;266(25):16420–16424. [PubMed] [Google Scholar]
  61. Olson E. N. Modification of proteins with covalent lipids. Prog Lipid Res. 1988;27(3):177–197. doi: 10.1016/0163-7827(88)90012-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Olson E. N., Towler D. A., Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem. 1985 Mar 25;260(6):3784–3790. [PubMed] [Google Scholar]
  63. Osen-Sand A., Catsicas M., Staple J. K., Jones K. A., Ayala G., Knowles J., Grenningloh G., Catsicas S. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature. 1993 Jul 29;364(6436):445–448. doi: 10.1038/364445a0. [DOI] [PubMed] [Google Scholar]
  64. Oyler G. A., Polli J. W., Wilson M. C., Billingsley M. L. Developmental expression of the 25-kDa synaptosomal-associated protein (SNAP-25) in rat brain. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5247–5251. doi: 10.1073/pnas.88.12.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Parenti M., Viganó M. A., Newman C. M., Milligan G., Magee A. I. A novel N-terminal motif for palmitoylation of G-protein alpha subunits. Biochem J. 1993 Apr 15;291(Pt 2):349–353. doi: 10.1042/bj2910349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Patterson P. H. On the importance of being inhibited, or saying no to growth cones. Neuron. 1988 Jun;1(4):263–267. doi: 10.1016/0896-6273(88)90074-8. [DOI] [PubMed] [Google Scholar]
  67. Perrone-Bizzozero N. I., Benowitz L. I. Expression of a 48-kilodalton growth-associated protein in the goldfish retina. J Neurochem. 1987 Feb;48(2):644–652. doi: 10.1111/j.1471-4159.1987.tb04141.x. [DOI] [PubMed] [Google Scholar]
  68. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell. 1989 Oct 6;59(1):95–102. doi: 10.1016/0092-8674(89)90872-6. [DOI] [PubMed] [Google Scholar]
  69. Pfenninger K. H., Ellis L., Johnson M. P., Friedman L. B., Somlo S. Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell. 1983 Dec;35(2 Pt 1):573–584. doi: 10.1016/0092-8674(83)90191-5. [DOI] [PubMed] [Google Scholar]
  70. Raper J. A., Grunewald E. B. Temporal retinal growth cones collapse on contact with nasal retinal axons. Exp Neurol. 1990 Jul;109(1):70–74. doi: 10.1016/s0014-4886(05)80009-3. [DOI] [PubMed] [Google Scholar]
  71. Raper J. A., Kapfhammer J. P. The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron. 1990 Jan;4(1):21–29. doi: 10.1016/0896-6273(90)90440-q. [DOI] [PubMed] [Google Scholar]
  72. Redshaw J. D., Bisby M. A. Comparison of the effects of sciatic nerve crush or resection on the proteins of fast axonal transport in rat dorsal root ganglion cell axons. Exp Neurol. 1985 May;88(2):437–446. doi: 10.1016/0014-4886(85)90205-5. [DOI] [PubMed] [Google Scholar]
  73. Richter-Landsberg C., Duksin D. Role of glycoproteins in neuronal differentiation. Inhibition of neurite outgrowth and the major cell surface glycoprotein of murine neuroblastoma cells by a purified tunicamycin homologue. Exp Cell Res. 1983 Dec;149(2):335–345. doi: 10.1016/0014-4827(83)90347-6. [DOI] [PubMed] [Google Scholar]
  74. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401–410. doi: 10.1016/0092-8674(92)90164-8. [DOI] [PubMed] [Google Scholar]
  75. Riendeau D., Guertin D. ATP- and coenzyme A-dependent fatty acid incorporation into proteins of cell-free extracts from mouse tissues. J Biol Chem. 1986 Jan 15;261(2):976–981. [PubMed] [Google Scholar]
  76. Ruff P., Speicher D. W., Husain-Chishti A. Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6595–6599. doi: 10.1073/pnas.88.15.6595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sankary H. N., Sarfeh I. J., Kulovich S., Leslie J., Mason G. R. The source of hepatic blood supply influences plasma amino acid patterns. Curr Surg. 1985 Jul-Aug;42(4):304–306. [PubMed] [Google Scholar]
  78. Schmidt J. W., Catterall W. A. Palmitylation, sulfation, and glycosylation of the alpha subunit of the sodium channel. Role of post-translational modifications in channel assembly. J Biol Chem. 1987 Oct 5;262(28):13713–13723. [PubMed] [Google Scholar]
  79. Schmidt M. F., Burns G. R. Hydrophobic modifications of membrane proteins by palmitoylation in vitro. Biochem Soc Trans. 1989 Aug;17(4):625–626. doi: 10.1042/bst0170625. [DOI] [PubMed] [Google Scholar]
  80. Schmidt M. F. Fatty acylation of proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):411–426. doi: 10.1016/0304-4157(89)90013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Schmidt M. F., Lambrecht B. On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus haemagglutinin and the glycoproteins of Semliki Forest virus. J Gen Virol. 1985 Dec;66(Pt 12):2635–2647. doi: 10.1099/0022-1317-66-12-2635. [DOI] [PubMed] [Google Scholar]
  82. Schneider A., Eichenberger W., Seebeck T. A microtubule-binding protein of Trypanosoma brucei which contains covalently bound fatty acid. J Biol Chem. 1988 May 15;263(14):6472–6475. [PubMed] [Google Scholar]
  83. Schreyer D. J., Skene J. H. Fate of GAP-43 in ascending spinal axons of DRG neurons after peripheral nerve injury: delayed accumulation and correlation with regenerative potential. J Neurosci. 1991 Dec;11(12):3738–3751. doi: 10.1523/JNEUROSCI.11-12-03738.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Schwab M. E., Schnell L. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J Neurosci. 1991 Mar;11(3):709–721. doi: 10.1523/JNEUROSCI.11-03-00709.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Simkowitz P., Ellis L., Pfenninger K. H. Membrane proteins of the nerve growth cone and their developmental regulation. J Neurosci. 1989 Mar;9(3):1004–1017. doi: 10.1523/JNEUROSCI.09-03-01004.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Skene J. H. Axonal growth-associated proteins. Annu Rev Neurosci. 1989;12:127–156. doi: 10.1146/annurev.ne.12.030189.001015. [DOI] [PubMed] [Google Scholar]
  87. Skene J. H., Shooter E. M. Denervated sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4169–4173. doi: 10.1073/pnas.80.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Skene J. H., Virág I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 1989 Feb;108(2):613–624. doi: 10.1083/jcb.108.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Sobue K., Kanda K. Alpha-actinins, calspectin (brain spectrin or fodrin), and actin participate in adhesion and movement of growth cones. Neuron. 1989 Sep;3(3):311–319. doi: 10.1016/0896-6273(89)90255-9. [DOI] [PubMed] [Google Scholar]
  90. Sretavan D. W., Reichardt L. F. Time-lapse video analysis of retinal ganglion cell axon pathfinding at the mammalian optic chiasm: growth cone guidance using intrinsic chiasm cues. Neuron. 1993 Apr;10(4):761–777. doi: 10.1016/0896-6273(93)90176-r. [DOI] [PubMed] [Google Scholar]
  91. Staufenbiel M. Fatty acids covalently bound to erythrocyte proteins undergo a differential turnover in vivo. J Biol Chem. 1988 Sep 25;263(27):13615–13622. [PubMed] [Google Scholar]
  92. Suidan H. S., Stone S. R., Hemmings B. A., Monard D. Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors. Neuron. 1992 Feb;8(2):363–375. doi: 10.1016/0896-6273(92)90302-t. [DOI] [PubMed] [Google Scholar]
  93. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  94. Südhof T. C., Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron. 1991 May;6(5):665–677. doi: 10.1016/0896-6273(91)90165-v. [DOI] [PubMed] [Google Scholar]
  95. Takatsuki A., Tamura G. Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo) 1971 Nov;24(11):785–794. doi: 10.7164/antibiotics.24.785. [DOI] [PubMed] [Google Scholar]
  96. Walter J., Allsopp T. E., Bonhoeffer F. A common denominator of growth cone guidance and collapse? Trends Neurosci. 1990 Nov;13(11):447–452. doi: 10.1016/0166-2236(90)90097-t. [DOI] [PubMed] [Google Scholar]
  97. Wellner R. B., Ghosh P. C., Roecklein B., Wu H. C. Perturbation of N-linked oligosaccharide structure results in an altered incorporation of [3H]palmitate into specific proteins in Chinese hamster ovary cells. J Biol Chem. 1987 Sep 25;262(27):13204–13211. [PubMed] [Google Scholar]
  98. Wilcox C. A., Olson E. N. The majority of cellular fatty acid acylated proteins are localized to the cytoplasmic surface of the plasma membrane. Biochemistry. 1987 Feb 24;26(4):1029–1036. doi: 10.1021/bi00378a008. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES