Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Feb 2;124(4):579–588. doi: 10.1083/jcb.124.4.579

Ovotransferrin and ovotransferrin receptor expression during chondrogenesis and endochondral bone formation in developing chick embryo

PMCID: PMC2119920  PMID: 8106555

Abstract

Ovotransferrin expression during chick embryo tibia development has been investigated in vivo by immunocytochemistry and in situ hybridization. Ovotransferrin was first observed in the 7 day cartilaginous rudiment. At later stages, the factor was localized in the articular zone of the bone epiphysis and in the bone diaphysis where it was concentrated in hypertrophic cartilage, in zones of cartilage erosion and in the osteoid at the chondro-bone junction. When the localization of the ovotransferrin receptors was investigated, it was observed that chondrocytes at all stages of differentiation express a low level of the oviduct (tissue) specific receptor. Interestingly, high levels of the receptor were detectable in the 13-d old tibia in the diaphysis collar of stacked-osteoprogenitor cells and in the layer of derived osteoblasts. High levels of oviduct receptor were also observed in the primordia of the menisci. Metabolic labeling of proteins secreted by cultured chondrocytes and osteoblasts and Northern blot analysis of RNA extracted from the same cells confirmed and completed the above information. Ovotransferrin was expressed by in vitro differentiating chondrocytes in the early phase of the culture and, at least when culture conditions allowed extracellular matrix assembly, also by hypertrophic chondrocytes and derived osteoblast-like cells. Osteoblasts directly obtained from bone chips produced ovotransferrin only at the time of culture mineralization. By Western blot analysis, oviduct receptor proteins were detected at a very low level in extract from differentiating and hypertrophic chondrocytes and at a higher level in extract from hypertrophic chondrocytes undergoing differentiation to osteoblast-like cells and from mineralizing osteoblasts. Based on these results, the existence of autocrine and paracrine loops involving ovotransferrin and its receptor during chondrogenesis and endochondral bone formation is discussed.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizenman Y., Weichsel M. E., Jr, de Vellis J. Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2263–2266. doi: 10.1073/pnas.83.7.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beach R. L., Popiela H., Festoff B. W. Specificity of chicken and mammalian transferrins in myogenesis. Cell Differ. 1985 Apr;16(2):93–100. doi: 10.1016/0045-6039(85)90522-6. [DOI] [PubMed] [Google Scholar]
  4. Bloch B., Popovici T., Levin M. J., Tuil D., Kahn A. Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6706–6710. doi: 10.1073/pnas.82.19.6706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonatti S., Cancedda F. D. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells. J Virol. 1982 Apr;42(1):64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cancedda F. D., Dozin B., Rossi F., Molina F., Cancedda R., Negri A., Ronchi S. The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins. J Biol Chem. 1990 Nov 5;265(31):19060–19064. [PubMed] [Google Scholar]
  7. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan L. N., Gerhardt E. M. Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem. 1992 Apr 25;267(12):8254–8259. [PubMed] [Google Scholar]
  9. Chan L. N., Grammatikakis N., Banks J. M., Gerhardt E. M. Chicken transferrin receptor gene: conservation 3' noncoding sequences and expression in erythroid cells. Nucleic Acids Res. 1989 May 25;17(10):3763–3771. doi: 10.1093/nar/17.10.3763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Descalzi Cancedda F., Gentili C., Manduca P., Cancedda R. Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol. 1992 Apr;117(2):427–435. doi: 10.1083/jcb.117.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Descalzi Cancedda F., Manduca P., Tacchetti C., Fossa P., Quarto R., Cancedda R. Developmentally regulated synthesis of a low molecular weight protein (Ch 21) by differentiating chondrocytes. J Cell Biol. 1988 Dec;107(6 Pt 1):2455–2463. doi: 10.1083/jcb.107.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ekblom P., Thesleff I., Saxén L., Miettinen A., Timpl R. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction. Proc Natl Acad Sci U S A. 1983 May;80(9):2651–2655. doi: 10.1073/pnas.80.9.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuernkranz H. A., Schwob J. E., Lucas J. J. Differential tissue localization of oviduct and erythroid transferrin receptors. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7505–7508. doi: 10.1073/pnas.88.17.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gentili C., Bianco P., Neri M., Malpeli M., Campanile G., Castagnola P., Cancedda R., Cancedda F. D. Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells. J Cell Biol. 1993 Aug;122(3):703–712. doi: 10.1083/jcb.122.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerhardt E. M., Chan L. N., Jing S. Q., Qi M. Y., Trowbridge I. S. The cDNA sequence and primary structure of the chicken transferrin receptor. Gene. 1991 Jun 30;102(2):249–254. doi: 10.1016/0378-1119(91)90085-p. [DOI] [PubMed] [Google Scholar]
  17. Hamm G. H., Cameron G. N. The EMBL data library. Nucleic Acids Res. 1986 Jan 10;14(1):5–9. doi: 10.1093/nar/14.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horton M. A. Expression of transferrin receptors during erythroid maturation. Exp Cell Res. 1983 Apr 1;144(2):361–366. doi: 10.1016/0014-4827(83)90415-9. [DOI] [PubMed] [Google Scholar]
  19. Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
  20. Hugly S., Griswold M. Regulation of levels of specific Sertoli cell mRNAs by vitamin A. Dev Biol. 1987 Jun;121(2):316–324. doi: 10.1016/0012-1606(87)90167-9. [DOI] [PubMed] [Google Scholar]
  21. Jeltsch J. M., Chambon P. The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem. 1982 Feb;122(2):291–295. doi: 10.1111/j.1432-1033.1982.tb05879.x. [DOI] [PubMed] [Google Scholar]
  22. Manduca P., Descalzi Cancedda F., Cancedda R. Chondrogenic differentiation in chick embryo osteoblast cultures. Eur J Cell Biol. 1992 Apr;57(2):193–201. [PubMed] [Google Scholar]
  23. Manduca P., Descalzi Cancedda F., Tacchetti C., Quarto R., Fossa P., Cancedda R. Synthesis and secretion of Ch 21 protein in embryonic chick skeletal tissues. Eur J Cell Biol. 1989 Oct;50(1):154–161. [PubMed] [Google Scholar]
  24. McKnight G. S., Lee D. C., Hemmaplardh D., Finch C. A., Palmiter R. D. Transferrin gene expression. Effects of nutritional iron deficiency. J Biol Chem. 1980 Jan 10;255(1):144–147. [PubMed] [Google Scholar]
  25. Partanen A. M., Thesleff I., Ekblom P. Transferrin is required for early tooth morphogenesis. Differentiation. 1984;27(1):59–66. doi: 10.1111/j.1432-0436.1984.tb01408.x. [DOI] [PubMed] [Google Scholar]
  26. Poola I., Lucas J. J. Purification and characterization of an estrogen-inducible membrane glycoprotein. Evidence that it is a transferrin receptor. J Biol Chem. 1988 Dec 15;263(35):19137–19146. [PubMed] [Google Scholar]
  27. Richman J. M., Diewert V. M. The fate of Meckel's cartilage chondrocytes in ocular culture. Dev Biol. 1988 Sep;129(1):48–60. doi: 10.1016/0012-1606(88)90160-1. [DOI] [PubMed] [Google Scholar]
  28. Schmidt J. A., Marshall J., Hayman M. J., Beug H. Primitive series embryonic chick erythrocytes express the transferrin receptor. Exp Cell Res. 1986 May;164(1):71–78. doi: 10.1016/0014-4827(86)90455-6. [DOI] [PubMed] [Google Scholar]
  29. Schmidt J. A., Marshall J., Hayman M. J. Identification and characterization of the chicken transferrin receptor. Biochem J. 1985 Dec 15;232(3):735–741. doi: 10.1042/bj2320735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Skinner M. K., Schlitz S. M., Anthony C. T. Regulation of Sertoli cell differentiated function: testicular transferrin and androgen-binding protein expression. Endocrinology. 1989 Jun;124(6):3015–3024. doi: 10.1210/endo-124-6-3015. [DOI] [PubMed] [Google Scholar]
  31. Stamatos C., Fine R. E. Chick embryo myotubes contain transferrin receptors and internalize and recycle transferrin. J Neurosci Res. 1986;15(4):529–542. doi: 10.1002/jnr.490150410. [DOI] [PubMed] [Google Scholar]
  32. Strauss P. G., Closs E. I., Schmidt J., Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990 Apr;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thesingh C. W., Groot C. G., Wassenaar A. M. Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones, induced by co-cultured cerebrum. Bone Miner. 1991 Jan;12(1):25–40. doi: 10.1016/0169-6009(91)90119-k. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trowbridge I. S., Omary M. B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981 May;78(5):3039–3043. doi: 10.1073/pnas.78.5.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsutsumi M., Skinner M. K., Sanders-Bush E. Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. Regulation by serotonin and cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1989 Jun 5;264(16):9626–9631. [PubMed] [Google Scholar]
  37. de Jong G., van Dijk J. P., van Eijk H. G. The biology of transferrin. Clin Chim Acta. 1990 Sep;190(1-2):1–46. doi: 10.1016/0009-8981(90)90278-z. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES