Abstract
Previously, we reported that flagellar excision in Chlamydomonas reinhardtii is mediated by an active process whereby microtubules are severed at select sites within the flagellar-basal body transition zone (Sanders, M. A., and J. L. Salisbury. 1989. J. Cell Biol. 108:1751- 1760). At the time of flagellar excision, stellate fibers of the transition zone contract and displace the microtubule doublets of the axoneme inward. The resulting shear force and torsional load generated during inward displacement leads to microtubule severing immediately distal to the central cylinder of the transition zone. In this study, we have used a detergent-extracted cell model of Chlamydomonas that allows direct experimental access to the molecular machinery responsible for microtubule severing without the impediment of the plasma membrane. We present four independent lines of experimental evidence for the essential involvement of centrin-based stellate fibers of the transition zone in the process of flagellar excision: (a) Detergent-extracted cell models excise their flagella in response to elevated, yet physiological, levels of free calcium. (b) Extraction of cell models with buffers containing the divalent cation chelator EDTA leads to the disassembly of centrin-based fibers and to the disruption of transition zone stellate fiber structure. This treatment results in a complete loss of flagellar excision competence. (c) Three separate anti-centrin monoclonal antibody preparations, which localize to the stellate fibers of the transition zone, specifically inhibit contraction of the stellate fibers and block calcium-induced flagellar excision, while control antibodies have no inhibitory effect. Finally, (d) cells of the centrin mutant vfl-2 (Taillon, B., S. Adler, J. Suhan, and J. Jarvik. 1992. J. Cell Biol. 119:1613-1624) fail to actively excise their flagella following pH shock in living cells or calcium treatment of detergent-extracted cell models. Taken together, these observations demonstrate that centrin-based fiber contraction plays a fundamental role in microtubule severing at the time of flagellar excision in Chlamydomonas.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baas P. W., Joshi H. C. Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Cell Biol. 1992 Oct;119(1):171–178. doi: 10.1083/jcb.119.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J. Existence of a breaking point in cilia and flagella. J Theor Biol. 1971 Nov;33(2):257–263. doi: 10.1016/0022-5193(71)90065-8. [DOI] [PubMed] [Google Scholar]
- Coling D. E., Salisbury J. L. Characterization of the calcium-binding contractile protein centrin from Tetraselmis striata (Pleurastrophyceae). J Protozool. 1992 May-Jun;39(3):385–391. doi: 10.1111/j.1550-7408.1992.tb01468.x. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hollenbeck P. J., Dentler W. L. Cell biology. Microtubules get the chop. Nature. 1991 Apr 4;350(6317):378–379. doi: 10.1038/350378a0. [DOI] [PubMed] [Google Scholar]
- Huang B., Mengersen A., Lee V. D. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol. 1988 Jul;107(1):133–140. doi: 10.1083/jcb.107.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulen D., Baron A., Salisbury J., Clarke M. Production and specificity of monoclonal antibodies against calmodulin from Dictyostelium discoideum. Cell Motil Cytoskeleton. 1991;18(2):113–122. doi: 10.1002/cm.970180206. [DOI] [PubMed] [Google Scholar]
- LANG N. J. AN ADDITIONAL ULTRASTRUCTURAL COMPONENT OF FLAGELLA. J Cell Biol. 1963 Dec;19:631–634. doi: 10.1083/jcb.19.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindemann C. B., Gardner T. K., Westbrook E., Kanous K. S. The calcium-induced curvature reversal of rat sperm is potentiated by cAMP and inhibited by anti-calmodulin. Cell Motil Cytoskeleton. 1991;20(4):316–324. doi: 10.1002/cm.970200407. [DOI] [PubMed] [Google Scholar]
- Lindemann C. B., Goltz J. S. Calcium regulation of flagellar curvature and swimming pattern in triton X-100--extracted rat sperm. Cell Motil Cytoskeleton. 1988;10(3):420–431. doi: 10.1002/cm.970100309. [DOI] [PubMed] [Google Scholar]
- McBeath E., Fujiwara K. Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells. Eur J Cell Biol. 1990 Jun;52(1):1–16. [PubMed] [Google Scholar]
- McDonald K. Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res. 1984 Feb;86(2):107–118. doi: 10.1016/s0022-5320(84)80051-9. [DOI] [PubMed] [Google Scholar]
- McNally F. J., Vale R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell. 1993 Nov 5;75(3):419–429. doi: 10.1016/0092-8674(93)90377-3. [DOI] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
- Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol. 1990 Jun;30(6):522–562. doi: 10.1007/BF02101108. [DOI] [PubMed] [Google Scholar]
- Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
- RODRIGUEZ J., DEINHARDT F. Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology. 1960 Oct;12:316–317. doi: 10.1016/0042-6822(60)90205-1. [DOI] [PubMed] [Google Scholar]
- Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
- Salisbury J. L., Baron A. T., Sanders M. A. The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol. 1988 Aug;107(2):635–641. doi: 10.1083/jcb.107.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salisbury J. L. Calcium-sequestering vesicles and contractile flagellar roots. J Cell Sci. 1982 Dec;58:433–443. doi: 10.1242/jcs.58.1.433. [DOI] [PubMed] [Google Scholar]
- Salisbury J. L., Sanders M. A., Harpst L. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol. 1987 Oct;105(4):1799–1805. doi: 10.1083/jcb.105.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D., Leslie R. J., Saxton W. M., Karow M. L., McIntosh J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol. 1984 Dec;99(6):2165–2174. doi: 10.1083/jcb.99.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders M. A., Salisbury J. L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1989 May;108(5):1751–1760. doi: 10.1083/jcb.108.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiina N., Gotoh Y., Nishida E. A novel homo-oligomeric protein responsible for an MPF-dependent microtubule-severing activity. EMBO J. 1992 Dec;11(13):4723–4731. doi: 10.1002/j.1460-2075.1992.tb05577.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder J. A., McIntosh J. R. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J Cell Biol. 1975 Dec;67(3):744–760. doi: 10.1083/jcb.67.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taillon B. E., Adler S. A., Suhan J. P., Jarvik J. W. Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas. J Cell Biol. 1992 Dec;119(6):1613–1624. doi: 10.1083/jcb.119.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]
- Wright R. L., Adler S. A., Spanier J. G., Jarvik J. W. Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskeleton. 1989;14(4):516–526. doi: 10.1002/cm.970140409. [DOI] [PubMed] [Google Scholar]
- Wright R. L., Salisbury J., Jarvik J. W. A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol. 1985 Nov;101(5 Pt 1):1903–1912. doi: 10.1083/jcb.101.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu W., Centonze V. E., Ahmad F. J., Baas P. W. Microtubule nucleation and release from the neuronal centrosome. J Cell Biol. 1993 Jul;122(2):349–359. doi: 10.1083/jcb.122.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
