Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Mar 2;124(6):997–1004. doi: 10.1083/jcb.124.6.997

Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome

PMCID: PMC2119967  PMID: 8132720

Abstract

The microfibrillar glycoprotein fibrillin is linked to the Marfan syndrome, an autosomal dominant connective tissue disorder. In this study, fibrillin synthesis, deposition and assembly has been investigated in Marfan dermal fibroblast lines from two unrelated patients for whom distinct mutations in the fibrillin gene FBN1 have been identified. In patient NB, a point mutation has occurred which causes an amino acid substitution and the other patient (GK) has a deletion in one allele. The two cell lines were broadly comparable with respect to de novo fibrillin synthesis and its distribution between medium and cell layer compartments. Electrophoresis of fibrillin immunoprecipitates confirmed the presence of fibrillin in medium and cell layers. GK cells secreted an additional higher relative molecular mass fibrillin-immunoreactive component. The time-course of fibrillin secretion was similar for the two lines, but differences in fibrillin aggregation were apparent. Rotary shadowing electron microscopy of extracted cell layers demonstrated the presence of abundant and extensive microfibrils in NB cell layers. These were abnormal in their gross morphology in comparison to microfibrils isolated from control cultures. No periodic microfibrillar structures were isolated from GK cell layers. These studies underline the need to classify fibrillin defects in terms of biochemical and ultrastructural criteria. Examination of the effects of individual mutations on microfibril organization will be particularly informative in elucidating the relationship between microfibril dysfunction and the complex clinical manifestations of Marfan patients.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleary E. G., Gibson M. A. Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res. 1983;10:97–209. doi: 10.1016/b978-0-12-363710-9.50009-5. [DOI] [PubMed] [Google Scholar]
  2. Corson G. M., Chalberg S. C., Dietz H. C., Charbonneau N. L., Sakai L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. Genomics. 1993 Aug;17(2):476–484. doi: 10.1006/geno.1993.1350. [DOI] [PubMed] [Google Scholar]
  3. Dietz H. C., Cutting G. R., Pyeritz R. E., Maslen C. L., Sakai L. Y., Corson G. M., Puffenberger E. G., Hamosh A., Nanthakumar E. J., Curristin S. M. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991 Jul 25;352(6333):337–339. doi: 10.1038/352337a0. [DOI] [PubMed] [Google Scholar]
  4. Dietz H. C., McIntosh I., Sakai L. Y., Corson G. M., Chalberg S. C., Pyeritz R. E., Francomano C. A. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993 Aug;17(2):468–475. doi: 10.1006/geno.1993.1349. [DOI] [PubMed] [Google Scholar]
  5. Dietz H. C., Pyeritz R. E., Puffenberger E. G., Kendzior R. J., Jr, Corson G. M., Maslen C. L., Sakai L. Y., Francomano C. A., Cutting G. R. Marfan phenotype variability in a family segregating a missense mutation in the epidermal growth factor-like motif of the fibrillin gene. J Clin Invest. 1992 May;89(5):1674–1680. doi: 10.1172/JCI115766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietz H. C., Saraiva J. M., Pyeritz R. E., Cutting G. R., Francomano C. A. Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Hum Mutat. 1992;1(5):366–374. doi: 10.1002/humu.1380010504. [DOI] [PubMed] [Google Scholar]
  7. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  8. Fleischmajer R., Perlish J. S., Faraggiana T. Rotary shadowing of collagen monomers, oligomers, and fibrils during tendon fibrillogenesis. J Histochem Cytochem. 1991 Jan;39(1):51–58. doi: 10.1177/39.1.1983873. [DOI] [PubMed] [Google Scholar]
  9. Gibson M. A., Sandberg L. B., Grosso L. E., Cleary E. G. Complementary DNA cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete component of the elastin-associated microfibrils. J Biol Chem. 1991 Apr 25;266(12):7596–7601. [PubMed] [Google Scholar]
  10. Godfrey M. Molecular heterogeneity: a clinical dilemma. Clinical heterogeneity: a molecular dilemma. Am J Hum Genet. 1993 Jul;53(1):22–25. [PMC free article] [PubMed] [Google Scholar]
  11. Godfrey M., Vandemark N., Wang M., Velinov M., Wargowski D., Tsipouras P., Han J., Becker J., Robertson W., Droste S. Prenatal diagnosis and a donor splice site mutation in fibrillin in a family with Marfan syndrome. Am J Hum Genet. 1993 Aug;53(2):472–480. [PMC free article] [PubMed] [Google Scholar]
  12. Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
  13. Hewett D. R., Lynch J. R., Smith R., Sykes B. C. A novel fibrillin mutation in the Marfan syndrome which could disrupt calcium binding of the epidermal growth factor-like module. Hum Mol Genet. 1993 Apr;2(4):475–477. doi: 10.1093/hmg/2.4.475. [DOI] [PubMed] [Google Scholar]
  14. Kainulainen K., Sakai L. Y., Child A., Pope F. M., Puhakka L., Ryhänen L., Palotie A., Kaitila I., Peltonen L. Two mutations in Marfan syndrome resulting in truncated fibrillin polypeptides. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5917–5921. doi: 10.1073/pnas.89.13.5917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kainulainen K., Steinmann B., Collins F., Dietz H. C., Francomano C. A., Child A., Kilpatrick M. W., Brock D. J., Keston M., Pyeritz R. E. Marfan syndrome: no evidence for heterogeneity in different populations, and more precise mapping of the gene. Am J Hum Genet. 1991 Sep;49(3):662–667. [PMC free article] [PubMed] [Google Scholar]
  16. Keene D. R., Maddox B. K., Kuo H. J., Sakai L. Y., Glanville R. W. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 1991 Apr;39(4):441–449. doi: 10.1177/39.4.2005373. [DOI] [PubMed] [Google Scholar]
  17. Keene D. R., Sakai L. Y., Burgeson R. E. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J Histochem Cytochem. 1991 Jan;39(1):59–69. doi: 10.1177/39.1.1983874. [DOI] [PubMed] [Google Scholar]
  18. Kielty C. M., Berry L., Whittaker S. P., Grant M. E., Shuttleworth C. A. Microfibrillar assemblies of foetal bovine skin. Developmental expression and relative abundance of type VI collagen and fibrillin. Matrix. 1993 Mar;13(2):103–112. [PubMed] [Google Scholar]
  19. Kielty C. M., Boot-Handford R. P., Ayad S., Shuttleworth C. A., Grant M. E. Molecular composition of type VI collagen. Evidence for chain heterogeneity in mammalian tissues and cultured cells. Biochem J. 1990 Dec 15;272(3):787–795. doi: 10.1042/bj2720787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kielty C. M., Cummings C., Whittaker S. P., Shuttleworth C. A., Grant M. E. Isolation and ultrastructural analysis of microfibrillar structures from foetal bovine elastic tissues. Relative abundance and supramolecular architecture of type VI collagen assemblies and fibrillin. J Cell Sci. 1991 Aug;99(Pt 4):797–807. doi: 10.1242/jcs.99.4.797. [DOI] [PubMed] [Google Scholar]
  21. Kielty C. M., Shuttleworth C. A. Synthesis and assembly of fibrillin by fibroblasts and smooth muscle cells. J Cell Sci. 1993 Sep;106(Pt 1):167–173. doi: 10.1242/jcs.106.1.167. [DOI] [PubMed] [Google Scholar]
  22. Kielty C. M., Shuttleworth C. A. The role of calcium in the organization of fibrillin microfibrils. FEBS Lett. 1993 Dec 27;336(2):323–326. doi: 10.1016/0014-5793(93)80829-j. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lee B., Godfrey M., Vitale E., Hori H., Mattei M. G., Sarfarazi M., Tsipouras P., Ramirez F., Hollister D. W. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991 Jul 25;352(6333):330–334. doi: 10.1038/352330a0. [DOI] [PubMed] [Google Scholar]
  25. Maslen C. L., Corson G. M., Maddox B. K., Glanville R. W., Sakai L. Y. Partial sequence of a candidate gene for the Marfan syndrome. Nature. 1991 Jul 25;352(6333):334–337. doi: 10.1038/352334a0. [DOI] [PubMed] [Google Scholar]
  26. Milewicz D. M., Pyeritz R. E., Crawford E. S., Byers P. H. Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J Clin Invest. 1992 Jan;89(1):79–86. doi: 10.1172/JCI115589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pereira L., D'Alessio M., Ramirez F., Lynch J. R., Sykes B., Pangilinan T., Bonadio J. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993 Jul;2(7):961–968. doi: 10.1093/hmg/2.7.961. [DOI] [PubMed] [Google Scholar]
  28. Raghunath M., Superti-Furga A., Godfrey M., Steinmann B. Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 1993 Jan;90(5):511–515. doi: 10.1007/BF00217450. [DOI] [PubMed] [Google Scholar]
  29. Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakai L. Y., Keene D. R., Glanville R. W., Bächinger H. P. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991 Aug 5;266(22):14763–14770. [PubMed] [Google Scholar]
  31. Shuttleworth C. A., Berry L., Kielty C. M. Microfibrillar components in dental pulp: presence of both type VI collagen- and fibrillin-containing microfibrils. Arch Oral Biol. 1992 Dec;37(12):1079–1084. doi: 10.1016/0003-9969(92)90040-f. [DOI] [PubMed] [Google Scholar]
  32. Tsipouras P., Del Mastro R., Sarfarazi M., Lee B., Vitale E., Child A. H., Godfrey M., Devereux R. B., Hewett D., Steinmann B. Genetic linkage of the Marfan syndrome, ectopia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. The International Marfan Syndrome Collaborative Study. N Engl J Med. 1992 Apr 2;326(14):905–909. doi: 10.1056/NEJM199204023261401. [DOI] [PubMed] [Google Scholar]
  33. Waggett A. D., Kielty C. M., Shuttleworth C. A. Microfibrillar elements in the synovial joint: presence of type VI collagen and fibrillin-containing microfibrils. Ann Rheum Dis. 1993 Jun;52(6):449–453. doi: 10.1136/ard.52.6.449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES