Abstract
The ciliated protozoan Paramecium has a regulated secretory system amenable to genetic analysis. The secretory storage granules, known as trichocysts, enclose a crystalline matrix with a genetically determined shape whose biogenesis involves proteolytic maturation of a family of precursor molecules into a heterogeneous set of small acidic polypeptides that crystallize within the maturing vesicles. We have developed an original pulse-chase protocol for monoxenic Paramecium cultures using radiolabeled bacteria to study the processing of trichocyst matrix proteins in wild-type and mutant cells. In wild-type cells, proteolytic processing is blocked in the presence of monensin and otherwise rapidly completed after approximately 20 min of chase, suggesting that the conversion occurs in the trans-Golgi and/or in small vesicles soon after sorting to the regulated pathway, probably before crystallization begins. In trichless mutant cells, which contain no visible trichocysts, secretory proteins are synthesized but not processed and we report constitutive secretion of the uncleaved precursor molecules. The mutation thus appears to affect sorting to the regulated pathway and should prove useful for analysis of the sorting machinery and of the relationship between sorting and proteolytic processing of secretory proteins. In mutants bearing misshapen trichocysts with poorly crystallized contents (tam33, tam38, stubbyA), the proteolytic processing of the trichocyst matrix proteins appears to be normal, while both pulse-chase and morphological data indicate that intracellular transport is perturbed, probably between ER and Golgi. Precursor molecules are present in the mutant trichocysts but not in wild-type trichocysts and may account for the defective crystallization. Our analysis of these mutants suggests that the temporal coordination of intracellular traffic plays a regulatory role in granule maturation.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adoutte A., de Loubresse N. G., Beisson J. Proteolytic cleavage and maturation of the crystalline secretion products of Paramecium. J Mol Biol. 1984 Dec 25;180(4):1065–1081. doi: 10.1016/0022-2836(84)90271-7. [DOI] [PubMed] [Google Scholar]
- Allen R. D., Fok A. K. Nonclathrin vesicle coats and filament networks in the transition zone and trans-Golgi region of the Golgi complex of Paramecium. J Struct Biol. 1993 May-Jun;110(3):215–226. doi: 10.1006/jsbi.1993.1024. [DOI] [PubMed] [Google Scholar]
- Anderson R. G., Orci L. A view of acidic intracellular compartments. J Cell Biol. 1988 Mar;106(3):539–543. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanat E., Weiss U., Huttner W. B., Tooze S. A. Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. EMBO J. 1993 May;12(5):2159–2168. doi: 10.1002/j.1460-2075.1993.tb05864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
- Cohen J., Beisson J. Genetic analysis of the relationships between the cell surface and the nuclei in Paramecium tetraurella. Genetics. 1980 Aug;95(4):797–818. doi: 10.1093/genetics/95.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
- Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J Cell Biol. 1983 Mar;96(3):835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross D. J., Halban P. A., Kahn C. R., Weir G. C., Villa-Komaroff L. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4107–4111. doi: 10.1073/pnas.86.11.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser C. A., Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990 May 18;61(4):723–733. doi: 10.1016/0092-8674(90)90483-u. [DOI] [PubMed] [Google Scholar]
- Knoll G., Braun C., Plattner H. Quenched flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. J Cell Biol. 1991 Jun;113(6):1295–1304. doi: 10.1083/jcb.113.6.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lefort-Tran M., Aufderheide K., Pouphile M., Rossignol M., Beisson J. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J Cell Biol. 1981 Feb;88(2):301–311. doi: 10.1083/jcb.88.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lepage-Lezin A., Joseph-Bravo P., Devilliers G., Benedetti L., Launay J. M., Gomez S., Cohen P. Prosomatostatin is processed in the Golgi apparatus of rat neural cells. J Biol Chem. 1991 Jan 25;266(3):1679–1688. [PubMed] [Google Scholar]
- Mollenhauer H. H., Morré D. J., Rowe L. D. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta. 1990 May 7;1031(2):225–246. doi: 10.1016/0304-4157(90)90008-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orci L., Ravazzola M., Storch M. J., Anderson R. G., Vassalli J. D., Perrelet A. Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell. 1987 Jun 19;49(6):865–868. doi: 10.1016/0092-8674(87)90624-6. [DOI] [PubMed] [Google Scholar]
- Orias E., Flacks M., Satir B. H. Isolation and ultrastructural characterization of secretory mutants of Tetrahymena thermophila. J Cell Sci. 1983 Nov;64:49–67. doi: 10.1242/jcs.64.1.49. [DOI] [PubMed] [Google Scholar]
- Plattner H., Lumpert C. J., Knoll G., Kissmehl R., Höhne B., Momayezi M., Glas-Albrecht R. Stimulus-secretion coupling in Paramecium cells. Eur J Cell Biol. 1991 Jun;55(1):3–16. [PubMed] [Google Scholar]
- Pollack S. Mutations affecting the trichocysts in Paramecium aurelia. I. Morphology and description of the mutants. J Protozool. 1974 May;21(2):352–362. doi: 10.1111/j.1550-7408.1974.tb03669.x. [DOI] [PubMed] [Google Scholar]
- Quinn P., Griffiths G., Warren G. Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin. J Cell Biol. 1983 Mar;96(3):851–856. doi: 10.1083/jcb.96.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
- Ruiz F., Adoutte A., Rossignol M., Beisson J. Genetic analysis of morphogenetic processes in Paramecium. I. A mutation affecting trichocyst formation and nuclear division. Genet Res. 1976 Apr;27(2):109–122. doi: 10.1017/s0016672300016323. [DOI] [PubMed] [Google Scholar]
- Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih S. J., Nelson D. L. Multiple families of proteins in the secretory granules of Paramecium tetraurelia: immunological characterization and immunocytochemical localization of trichocyst proteins. J Cell Sci. 1991 Sep;100(Pt 1):85–97. doi: 10.1242/jcs.100.1.85. [DOI] [PubMed] [Google Scholar]
- Shih S. J., Nelson D. L. Proteolytic processing of secretory proteins in Paramecium: immunological and biochemical characterization of the precursors of trichocyst matrix proteins. J Cell Sci. 1992 Oct;103(Pt 2):349–361. doi: 10.1242/jcs.103.2.349. [DOI] [PubMed] [Google Scholar]
- Sossin W. S., Fisher J. M., Scheller R. H. Sorting within the regulated secretory pathway occurs in the trans-Golgi network. J Cell Biol. 1990 Jan;110(1):1–12. doi: 10.1083/jcb.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperling L., Keryer G., Ruiz F., Beisson J. Cortical morphogenesis in Paramecium: a transcellular wave of protein phosphorylation involved in ciliary rootlet disassembly. Dev Biol. 1991 Nov;148(1):205–218. doi: 10.1016/0012-1606(91)90330-6. [DOI] [PubMed] [Google Scholar]
- Sperling L., Tardieu A., Gulik-Krzywicki T. The crystal lattice of Paramecium trichocysts before and after exocytosis by X-ray diffraction and freeze-fracture electron microscopy. J Cell Biol. 1987 Oct;105(4):1649–1662. doi: 10.1083/jcb.105.4.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
- Tindall S. H., DeVito L. D., Nelson D. L. Biochemical characterization of the proteins of Paramecium secretory granules. J Cell Sci. 1989 Mar;92(Pt 3):441–447. doi: 10.1242/jcs.92.3.441. [DOI] [PubMed] [Google Scholar]
- Tindall S. H. Selection of chemical spacers to improve isoelectric focusing resolving power: implications for use in two-dimensional electrophoresis. Anal Biochem. 1986 Dec;159(2):287–294. doi: 10.1016/0003-2697(86)90345-3. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turkewitz A. P., Madeddu L., Kelly R. B. Maturation of dense core granules in wild type and mutant Tetrahymena thermophila. EMBO J. 1991 Aug;10(8):1979–1987. doi: 10.1002/j.1460-2075.1991.tb07727.x. [DOI] [PMC free article] [PubMed] [Google Scholar]