Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Apr 1;125(1):11–19. doi: 10.1083/jcb.125.1.11

Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length

PMCID: PMC2120018  PMID: 8138565

Abstract

Chromatin fibers have been observed and measured in frozen hydrated sections of three types of cell (chicken erythrocytes and sperm of Patiria miniata and Thyone briareus) representing an approximately 20- bp range of nucleosomal repeat lengths. For sperm of the starfish P. miniata, it was possible to obtain images of chromatin fibers from cells that were swimming in seawater up to the moment of cryo- immobilization, thus providing a record of the native morphology of the chromatin of these cells. Glutaraldehyde fixation produced no significant changes in the ultrastructure or diameter of chromatin fibers, and fiber diameters observed in cryosections were similar to those recorded after low temperature embedding in Lowicryl K11M. Chromatin fiber diameters measured from cryosections of the three types of nuclei were similar, a striking contrast to the situation for chromatin isolated from these cell types, where a strong positive correlation between diameter and nucleosomal repeat length has been established. The demonstration of chromatin fibers in unfixed whole cells establishes an unequivocal baseline for the study of native chromatin and chromosome architecture. The significant differences between chromatin fibers in nucleo and after isolation supports a previous observation (P. J. Giannasca, R. A. Horowitz, and C. L. Woodcock. 1993. J. Cell Sci. 105:551-561), and suggests that structural studies on isolated material should be interpreted with caution until the changes that accompany chromatin isolation are understood.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alegre C., Subirana J. A. The diameter of chromatin fibres depends on linker length. Chromosoma. 1989 Jun;98(1):77–80. doi: 10.1007/BF00293338. [DOI] [PubMed] [Google Scholar]
  2. Athey B. D., Smith M. F., Rankert D. A., Williams S. P., Langmore J. P. The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J Cell Biol. 1990 Sep;111(3):795–806. doi: 10.1083/jcb.111.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bordas J., Perez-Grau L., Koch M. H., Vega M. C., Nave C. The superstructure of chromatin and its condensation mechanism. II. Theoretical analysis of the X-ray scattering patterns and model calculations. Eur Biophys J. 1986;13(3):175–185. doi: 10.1007/BF00542561. [DOI] [PubMed] [Google Scholar]
  4. Davies H. G., Murray A. B., Walmsley M. E. Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure. J Cell Sci. 1974 Nov;16(2):261–299. doi: 10.1242/jcs.16.2.261. [DOI] [PubMed] [Google Scholar]
  5. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  6. Giannasca P. J., Horowitz R. A., Woodcock C. L. Transitions between in situ and isolated chromatin. J Cell Sci. 1993 Jun;105(Pt 2):551–561. doi: 10.1242/jcs.105.2.551. [DOI] [PubMed] [Google Scholar]
  7. Horowitz R. A., Agard D. A., Sedat J. W., Woodcock C. L. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol. 1994 Apr;125(1):1–10. doi: 10.1083/jcb.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horowitz R. A., Giannasca P. J., Woodcock C. L. Ultrastructural preservation of nuclei and chromatin: improvement with low-temperature methods. J Microsc. 1990 Feb;157(Pt 2):205–224. doi: 10.1111/j.1365-2818.1990.tb02959.x. [DOI] [PubMed] [Google Scholar]
  9. Horowitz R. A., Woodcock C. L. Alternative staining methods for Lowicryl sections. J Histochem Cytochem. 1992 Jan;40(1):123–133. doi: 10.1177/40.1.1370308. [DOI] [PubMed] [Google Scholar]
  10. Kirschner R. H., Rusli M., Martin T. E. Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy. J Cell Biol. 1977 Jan;72(1):118–132. doi: 10.1083/jcb.72.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Langmore J. P., Paulson J. R. Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol. 1983 Apr;96(4):1120–1131. doi: 10.1083/jcb.96.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McDowall A. W., Smith J. M., Dubochet J. Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 1986 Jun;5(6):1395–1402. doi: 10.1002/j.1460-2075.1986.tb04373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murray J. M. Electron microscopy of frozen hydrated eukaryotic flagella. J Ultrastruct Mol Struct Res. 1986 Apr-Jun;95(1-3):196–209. doi: 10.1016/0889-1605(86)90041-8. [DOI] [PubMed] [Google Scholar]
  14. Poccia D. L., Simpson M. V., Green G. R. Transitions in histone variants during sea urchin spermatogenesis. Dev Biol. 1987 Jun;121(2):445–453. doi: 10.1016/0012-1606(87)90181-3. [DOI] [PubMed] [Google Scholar]
  15. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. II. The relationship between the 250 A fiber, superbeads and beads-on-a-string. Chromosoma. 1978 Dec 6;69(3):373–379. doi: 10.1007/BF00332140. [DOI] [PubMed] [Google Scholar]
  16. Ruiz-Carrillo A., Puigdomènech P., Eder G., Lurz R. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry. 1980 Jun 10;19(12):2544–2554. doi: 10.1021/bi00553a002. [DOI] [PubMed] [Google Scholar]
  17. Stewart M. Transmission electron microscopy of frozen hydrated biological material. Electron Microsc Rev. 1989;2(1):117–121. doi: 10.1016/0892-0354(89)90012-9. [DOI] [PubMed] [Google Scholar]
  18. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ward R. D., Nishioka D. Seasonal changes in testicular structure and localization of a sperm surface glycoprotein during spermatogenesis in sea urchins. J Histochem Cytochem. 1993 Mar;41(3):423–431. doi: 10.1177/41.3.8429205. [DOI] [PubMed] [Google Scholar]
  21. Williams S. P., Athey B. D., Muglia L. J., Schappe R. S., Gough A. H., Langmore J. P. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J. 1986 Jan;49(1):233–248. doi: 10.1016/S0006-3495(86)83637-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woodcock C. L., Frado L. L., Rattner J. B. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol. 1984 Jul;99(1 Pt 1):42–52. doi: 10.1083/jcb.99.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Woodcock C. L., Grigoryev S. A., Horowitz R. A., Whitaker N. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9021–9025. doi: 10.1073/pnas.90.19.9021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Woodcock C. L. Nucleus-associated intermediate filaments from chicken erythrocytes. J Cell Biol. 1980 Jun;85(3):881–889. doi: 10.1083/jcb.85.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zentgraf H., Franke W. W. Differences of supranucleosomal organization in different kinds of chromatin: cell type-specific globular subunits containing different numbers of nucleosomes. J Cell Biol. 1984 Jul;99(1 Pt 1):272–286. doi: 10.1083/jcb.99.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES