Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Apr 2;125(2):359–368. doi: 10.1083/jcb.125.2.359

Overexpression of human fibroblast caldesmon fragment containing actin- , Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosin and microfilaments

PMCID: PMC2120030  PMID: 8163552

Abstract

Fibroblast caldesmon is a protein postulated to participate in the modulation of the actin cytoskeleton and the regulation of actin-based motility. The cDNAs encoding the NH2-terminal (aa.1-243, CaD40) and COOH-terminal (aa.244-538, CaD39) fragments of human caldesmon were subcloned into expression vectors and we previously reported that bacterially produced CaD39 protein retains its actin-binding properties as well as its ability to enhance low M(r) tropomyosin (TM) binding to actin and to inhibit TM-actin-activated HMM ATPase activity in vitro (Novy, R. E., J. R. Sellers, L.-F. Liu, and J. J.-C. Lin. 1993. Cell Motil. Cytoskeleton. 26:248-261). Bacterially produced CaD40 does not bind actin. To study the in vivo effects of CaD39 expression on the stability of actin filaments in CHO cells, we isolated and characterized stable CHO transfectants which express varying amounts of CaD39. We found that expression of CaD39 in CHO cells stabilized microfilament bundles as well as endogenous TM. CaD39-expressing clones displayed an increased resistance to cytochalasin B and Triton X-100 treatments and yielded increased amounts of TM-containing actin filaments in microfilament isolation procedures. In addition, analysis of these clones with immunoblotting and indirect immunofluorescence microscopy with anti-TM antibody revealed that stabilized endogenous TM and enhanced TM-containing microfilament bundles parallel increased amounts of CaD39 expression. The increased TM observed corresponded to a decrease in TM turnover rate and did not appear to be due to increased synthesis of endogenous TM. Additionally, the phenomenon of stabilized TM did not occur in stable CHO clones expressing CaD40. Therefore, it is likely that CaD39 can enhance TM's binding to F-actin in vivo, thus reducing TM's rate of turnover and stabilizing actin microfilament bundles.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher A., Lynch W. Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: a comparison with the distributions of tropomyosin and alpha-actinin. J Cell Biol. 1985 May;100(5):1656–1663. doi: 10.1083/jcb.100.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castellino F., Heuser J., Marchetti S., Bruno B., Luini A. Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3775–3779. doi: 10.1073/pnas.89.9.3775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham C. C., Stossel T. P., Kwiatkowski D. J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science. 1991 Mar 8;251(4998):1233–1236. doi: 10.1126/science.1848726. [DOI] [PubMed] [Google Scholar]
  5. Dingus J., Hwo S., Bryan J. Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol. 1986 May;102(5):1748–1757. doi: 10.1083/jcb.102.5.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friederich E., Huet C., Arpin M., Louvard D. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell. 1989 Nov 3;59(3):461–475. doi: 10.1016/0092-8674(89)90030-5. [DOI] [PubMed] [Google Scholar]
  7. Hayashi K., Fujio Y., Kato I., Sobue K. Structural and functional relationships between h- and l-caldesmons. J Biol Chem. 1991 Jan 5;266(1):355–361. [PubMed] [Google Scholar]
  8. Hegmann T. E., Schulte D. L., Lin J. L., Lin J. J. Inhibition of intracellular granule movement by microinjection of monoclonal antibodies against caldesmon. Cell Motil Cytoskeleton. 1991;20(2):109–120. doi: 10.1002/cm.970200204. [DOI] [PubMed] [Google Scholar]
  9. Hosoya N., Hosoya H., Yamashiro S., Mohri H., Matsumura F. Localization of caldesmon and its dephosphorylation during cell division. J Cell Biol. 1993 Jun;121(5):1075–1082. doi: 10.1083/jcb.121.5.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishikawa R., Yamashiro S., Matsumura F. Annealing of gelsolin-severed actin fragments by tropomyosin in the presence of Ca2+. Potentiation of the annealing process by caldesmon. J Biol Chem. 1989 Oct 5;264(28):16764–16770. [PubMed] [Google Scholar]
  11. Ishikawa R., Yamashiro S., Matsumura F. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem. 1989 May 5;264(13):7490–7497. [PubMed] [Google Scholar]
  12. Janovick J. A., Natarajan K., Longo F., Conn P. M. Caldesmon: a bifunctional (calmodulin and actin) binding protein which regulates stimulated gonadotropin release. Endocrinology. 1991 Jul;129(1):68–74. doi: 10.1210/endo-129-1-68. [DOI] [PubMed] [Google Scholar]
  13. Lin J. J., Chou C. S., Lin J. L. Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application. Hybridoma. 1985 Fall;4(3):223–242. doi: 10.1089/hyb.1985.4.223. [DOI] [PubMed] [Google Scholar]
  14. Lin J. J., Davis-Nanthakumar E. J., Jin J. P., Lourim D., Novy R. E., Lin J. L. Epitope mapping of monoclonal antibodies against caldesmon and their effects on the binding of caldesmon to Ca++/calmodulin and to actin or actin-tropomyosin filaments. Cell Motil Cytoskeleton. 1991;20(2):95–108. doi: 10.1002/cm.970200203. [DOI] [PubMed] [Google Scholar]
  15. Lin J. J., Lin J. L., Davis-Nanthakumar E. J., Lourim D. Monoclonal antibodies against caldesmon, a Ca++/calmodulin- and actin-binding protein of smooth muscle and nonmuscle cells. Hybridoma. 1988 Jun;7(3):273–288. doi: 10.1089/hyb.1988.7.273. [DOI] [PubMed] [Google Scholar]
  16. Lin J. J., Matsumura F., Yamashiro-Matsumura S. Tropomyosin-enriched and alpha-actinin-enriched microfilaments isolated from chicken embryo fibroblasts by monoclonal antibodies. J Cell Biol. 1984 Jan;98(1):116–127. doi: 10.1083/jcb.98.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lourim D., Lin J. J. Expression of wild-type and nuclear localization-deficient human lamin A in chick myogenic cells. J Cell Sci. 1992 Nov;103(Pt 3):863–874. doi: 10.1242/jcs.103.3.863. [DOI] [PubMed] [Google Scholar]
  18. Mak A. S., Watson M. H., Litwin C. M., Wang J. H. Phosphorylation of caldesmon by cdc2 kinase. J Biol Chem. 1991 Apr 15;266(11):6678–6681. [PubMed] [Google Scholar]
  19. Marston S. B., Redwood C. S. The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon. J Biol Chem. 1993 Jun 15;268(17):12317–12320. [PubMed] [Google Scholar]
  20. Marston S. B., Redwood C. S. The molecular anatomy of caldesmon. Biochem J. 1991 Oct 1;279(Pt 1):1–16. doi: 10.1042/bj2790001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marston S., Pinter K., Bennett P. Caldesmon binds to smooth muscle myosin and myosin rod and crosslinks thick filaments to actin filaments. J Muscle Res Cell Motil. 1992 Apr;13(2):206–218. doi: 10.1007/BF01874158. [DOI] [PubMed] [Google Scholar]
  22. Matsumura F., Yamashiro S. Caldesmon. Curr Opin Cell Biol. 1993 Feb;5(1):70–76. doi: 10.1016/s0955-0674(05)80010-9. [DOI] [PubMed] [Google Scholar]
  23. Novy R. E., Lin J. L., Lin C. S., Lin J. J. Human fibroblast tropomyosin isoforms: characterization of cDNA clones and analysis of tropomyosin isoform expression in human tissues and in normal and transformed cells. Cell Motil Cytoskeleton. 1993;25(3):267–281. doi: 10.1002/cm.970250307. [DOI] [PubMed] [Google Scholar]
  24. Novy R. E., Lin J. L., Lin J. J. Characterization of cDNA clones encoding a human fibroblast caldesmon isoform and analysis of caldesmon expression in normal and transformed cells. J Biol Chem. 1991 Sep 5;266(25):16917–16924. [PubMed] [Google Scholar]
  25. Novy R. E., Sellers J. R., Liu L. F., Lin J. J. In vitro functional characterization of bacterially expressed human fibroblast tropomyosin isoforms and their chimeric mutants. Cell Motil Cytoskeleton. 1993;26(3):248–261. doi: 10.1002/cm.970260308. [DOI] [PubMed] [Google Scholar]
  26. Owada M. K., Hakura A., Iida K., Yahara I., Sobue K., Kakiuchi S. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci U S A. 1984 May;81(10):3133–3137. doi: 10.1073/pnas.81.10.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rodríguez Fernández J. L., Geiger B., Salomon D., Ben-Ze'ev A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton. 1992;22(2):127–134. doi: 10.1002/cm.970220206. [DOI] [PubMed] [Google Scholar]
  28. Sobue K., Kanda K., Tanaka T., Ueki N. Caldesmon: a common actin-linked regulatory protein in the smooth muscle and nonmuscle contractile system. J Cell Biochem. 1988 Jul;37(3):317–325. doi: 10.1002/jcb.240370306. [DOI] [PubMed] [Google Scholar]
  29. Sobue K., Sellers J. R. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem. 1991 Jul 5;266(19):12115–12118. [PubMed] [Google Scholar]
  30. Warren K. S., Lin J. J. Forced expression and assembly of rat cardiac troponin T isoforms in cultured muscle and nonmuscle cells. J Muscle Res Cell Motil. 1993 Dec;14(6):619–632. doi: 10.1007/BF00141559. [DOI] [PubMed] [Google Scholar]
  31. Yamakita Y., Yamashiro S., Matsumura F. Microinjection of nonmuscle and smooth muscle caldesmon into fibroblasts and muscle cells. J Cell Biol. 1990 Dec;111(6 Pt 1):2487–2498. doi: 10.1083/jcb.111.6.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamashiro-Matsumura S., Matsumura F. Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol. 1988 Jun;106(6):1973–1983. doi: 10.1083/jcb.106.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamashiro S., Matsumura F. Mitosis-specific phosphorylation of caldesmon: possible molecular mechanism of cell rounding during mitosis. Bioessays. 1991 Nov;13(11):563–568. doi: 10.1002/bies.950131103. [DOI] [PubMed] [Google Scholar]
  34. Yamashiro S., Yamakita Y., Ishikawa R., Matsumura F. Mitosis-specific phosphorylation causes 83K non-muscle caldesmon to dissociate from microfilaments. Nature. 1990 Apr 12;344(6267):675–678. doi: 10.1038/344675a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES