Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Jun 1;125(5):1047–1056. doi: 10.1083/jcb.125.5.1047

Yolk platelets in Xenopus oocytes maintain an acidic internal pH which may be essential for sodium accumulation

PMCID: PMC2120061  PMID: 8195288

Abstract

Yolk platelets constitute an embryonic endocytic compartment that stores maternally synthesized nutrients. The pH of Xenopus yolk platelets, measured by photometry on whole oocytes which had endocytosed FITC-vitellogenin, was found to be acidic (around pH 5.6). Experiments on digitonin-permeabilized oocytes showed that acidification was due to the activity of an NEM- and bafilomycin A1- sensitive vacuolar proton-ATPase. Proton pumping required chloride, but was not influenced by potassium or sodium. Passive proton leakage was slow, probably due to the buffer capacity of the yolk, and was dependent on the presence of cytoplasmic monovalent cations. In particular, sodium could drive proton efflux through an amiloride- sensitive Na+/H+ exchanger. 8-Bromo-cyclic-AMP was found to increase acidification, suggesting that pH can be regulated by intracellular second messengers. The moderately acidic pH does not promote degradation of the yolk platelets, which in oocytes are stable for weeks, but it is likely to be required to maintain the integrity of these organelles. Furthermore, the pH gradient created by the proton pump, when coupled with the Na+/H+ exchanger, is probably responsible for the accumulation and storage of sodium into the yolk platelets during oogenesis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 1992 Oct 9;258(5080):307–310. doi: 10.1126/science.1384130. [DOI] [PubMed] [Google Scholar]
  2. Al-Awqati Q. Proton-translocating ATPases. Annu Rev Cell Biol. 1986;2:179–199. doi: 10.1146/annurev.cb.02.110186.001143. [DOI] [PubMed] [Google Scholar]
  3. Armant D. R., Carson D. D., Decker G. L., Welply J. K., Lennarz W. J. Characterization of yolk platelets isolated from developing embryos of Arbacia punctulata. Dev Biol. 1986 Feb;113(2):342–355. doi: 10.1016/0012-1606(86)90169-7. [DOI] [PubMed] [Google Scholar]
  4. Arvan P., Rudnick G., Castle J. D. Osmotic properties and internal pH of isolated rat parotid secretory granules. J Biol Chem. 1984 Nov 10;259(21):13567–13572. [PubMed] [Google Scholar]
  5. Blair H. C., Teitelbaum S. L., Tan H. L., Koziol C. M., Schlesinger P. H. Passive chloride permeability charge coupled to H(+)-ATPase of avian osteoclast ruffled membrane. Am J Physiol. 1991 Jun;260(6 Pt 1):C1315–C1324. doi: 10.1152/ajpcell.1991.260.6.C1315. [DOI] [PubMed] [Google Scholar]
  6. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Busson S., Ovtracht L., Gounon P. Pathway and kinetics of vitellogenin-gold internalization in the Xenopus oocyte. Biol Cell. 1989;67(1):37–49. doi: 10.1111/j.1768-322x.1989.tb03008.x. [DOI] [PubMed] [Google Scholar]
  8. Cain C. C., Sipe D. M., Murphy R. F. Regulation of endocytic pH by the Na+,K+-ATPase in living cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):544–548. doi: 10.1073/pnas.86.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee D., Chakraborty M., Leit M., Neff L., Jamsa-Kellokumpu S., Fuchs R., Baron R. Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6257–6261. doi: 10.1073/pnas.89.14.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danilchik M. V., Gerhart J. C. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev Biol. 1987 Jul;122(1):101–112. doi: 10.1016/0012-1606(87)90336-8. [DOI] [PubMed] [Google Scholar]
  11. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  12. Dick D. A., Lea E. J. Partition of sodium fluxes in isolated toad oocytes. J Physiol. 1967 Jul;191(2):289–308. doi: 10.1113/jphysiol.1967.sp008251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  14. Fagotto F. Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch Insect Biochem Physiol. 1990;14(4):217–235. doi: 10.1002/arch.940140403. [DOI] [PubMed] [Google Scholar]
  15. Fagotto F. Yolk degradation in tick eggs: II. Evidence that cathepsin L-like proteinase is stored as a latent, acid-activable proenzyme. Arch Insect Biochem Physiol. 1990;14(4):237–252. doi: 10.1002/arch.940140404. [DOI] [PubMed] [Google Scholar]
  16. Fuchs R., Mâle P., Mellman I. Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem. 1989 Feb 5;264(4):2212–2220. [PubMed] [Google Scholar]
  17. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garty H., Benos D. J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev. 1988 Apr;68(2):309–373. doi: 10.1152/physrev.1988.68.2.309. [DOI] [PubMed] [Google Scholar]
  19. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grinstein S., Furuya W. The electrochemical H+ gradient of platelet secretory alpha-granules. Contribution of a H+ pump and a Donnan potential. J Biol Chem. 1983 Jun 25;258(12):7876–7882. [PubMed] [Google Scholar]
  21. Gurich R. W., DuBose T. D., Jr Heterogeneity of cAMP effect on endosomal proton transport. Am J Physiol. 1989 Nov;257(5 Pt 2):F777–F784. doi: 10.1152/ajprenal.1989.257.5.F777. [DOI] [PubMed] [Google Scholar]
  22. Harvey W. R. Physiology of V-ATPases. J Exp Biol. 1992 Nov;172:1–17. [PubMed] [Google Scholar]
  23. Hasegawa H., Skach W., Baker O., Calayag M. C., Lingappa V., Verkman A. S. A multifunctional aqueous channel formed by CFTR. Science. 1992 Nov 27;258(5087):1477–1479. doi: 10.1126/science.1279809. [DOI] [PubMed] [Google Scholar]
  24. Hemken P., Guo X. L., Wang Z. Q., Zhang K., Gluck S. Immunologic evidence that vacuolar H+ ATPases with heterogeneous forms of Mr = 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem. 1992 May 15;267(14):9948–9957. [PubMed] [Google Scholar]
  25. Hilden S. A., Ghoshroy K. B., Madias N. E. Na(+)-H+ exchange, but not Na(+)-K(+)-ATPase, is present in endosome-enriched microsomes from rabbit renal cortex. Am J Physiol. 1990 May;258(5 Pt 2):F1311–F1319. doi: 10.1152/ajprenal.1990.258.5.F1311. [DOI] [PubMed] [Google Scholar]
  26. Hilden S. A., Johns C. A., Madias N. E. Cl(-)-dependent ATP-driven H+ transport in rabbit renal cortical endosomes. Am J Physiol. 1988 Nov;255(5 Pt 2):F885–F897. doi: 10.1152/ajprenal.1988.255.5.F885. [DOI] [PubMed] [Google Scholar]
  27. Kanner B. I., Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem. 1987;22(1):1–38. doi: 10.3109/10409238709082546. [DOI] [PubMed] [Google Scholar]
  28. Lukacs G. L., Rotstein O. D., Grinstein S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ "leak". J Biol Chem. 1991 Dec 25;266(36):24540–24548. [PubMed] [Google Scholar]
  29. Mallya S. K., Partin J. S., Valdizan M. C., Lennarz W. J. Proteolysis of the major yolk glycoproteins is regulated by acidification of the yolk platelets in sea urchin embryos. J Cell Biol. 1992 Jun;117(6):1211–1221. doi: 10.1083/jcb.117.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mancini G. M., de Jonge H. R., Galjaard H., Verheijen F. W. Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. J Biol Chem. 1989 Sep 15;264(26):15247–15254. [PubMed] [Google Scholar]
  31. Maxfield F. R. Measurement of vacuolar pH and cytoplasmic calcium in living cells using fluorescence microscopy. Methods Enzymol. 1989;173:745–771. doi: 10.1016/s0076-6879(89)73048-2. [DOI] [PubMed] [Google Scholar]
  32. Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  34. Moolenaar W. H. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363–376. doi: 10.1146/annurev.ph.48.030186.002051. [DOI] [PubMed] [Google Scholar]
  35. Moriyama Y., Maeda M., Futai M. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles. J Biochem. 1990 Oct;108(4):689–693. doi: 10.1093/oxfordjournals.jbchem.a123264. [DOI] [PubMed] [Google Scholar]
  36. Moriyama Y., Maeda M., Futai M. Involvement of a non-proton pump factor (possibly Donnan-type equilibrium) in maintenance of an acidic pH in lysosomes. FEBS Lett. 1992 May 4;302(1):18–20. doi: 10.1016/0014-5793(92)80274-k. [DOI] [PubMed] [Google Scholar]
  37. Moriyama Y., Nelson N. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump. J Biol Chem. 1987 Jul 5;262(19):9175–9180. [PubMed] [Google Scholar]
  38. Morrill G. A., Kostellow A. B., Murphy J. B. Role of Na+, K+-ATPase in early embryonic development. Ann N Y Acad Sci. 1974;242(0):543–559. doi: 10.1111/j.1749-6632.1974.tb19116.x. [DOI] [PubMed] [Google Scholar]
  39. Morrill G. A. Water and electrolyte changes in amphibian eggs at ovulation. Exp Cell Res. 1965 Dec;40(3):664–667. doi: 10.1016/0014-4827(65)90245-4. [DOI] [PubMed] [Google Scholar]
  40. Morrill G. A., Ziegler D. Na+ and K+ uptake and exchange by the amphibian oocyte during the first meitotic division. Dev Biol. 1980 Jan;74(1):216–223. doi: 10.1016/0012-1606(80)90063-9. [DOI] [PubMed] [Google Scholar]
  41. Mulberg A. E., Tulk B. M., Forgac M. Modulation of coated vesicle chloride channel activity and acidification by reversible protein kinase A-dependent phosphorylation. J Biol Chem. 1991 Nov 5;266(31):20590–20593. [PubMed] [Google Scholar]
  42. Nanda A., Gukovskaya A., Tseng J., Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992 Nov 15;267(32):22740–22746. [PubMed] [Google Scholar]
  43. Opresko L. K., Wiley H. S. Receptor-mediated endocytosis in Xenopus oocytes. II. Evidence for two novel mechanisms of hormonal regulation. J Biol Chem. 1987 Mar 25;262(9):4116–4123. [PubMed] [Google Scholar]
  44. Opresko L., Wiley H. S., Wallace R. A. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Cell. 1980 Nov;22(1 Pt 1):47–57. doi: 10.1016/0092-8674(80)90153-1. [DOI] [PubMed] [Google Scholar]
  45. Otte A. P., van Run P., Heideveld M., van Driel R., Durston A. J. Neural induction is mediated by cross-talk between the protein kinase C and cyclic AMP pathways. Cell. 1989 Aug 25;58(4):641–648. doi: 10.1016/0092-8674(89)90099-8. [DOI] [PubMed] [Google Scholar]
  46. Palmer L. G., Century T. J., Civan M. M. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes. J Membr Biol. 1978 Apr 20;40(1):25–38. doi: 10.1007/BF01909737. [DOI] [PubMed] [Google Scholar]
  47. Pralong-Zamofing D., Yi Q. H., Schmalzing G., Good P., Geering K. Regulation of alpha 1-beta 3-NA(+)-K(+)-ATPase isozyme during meiotic maturation of Xenopus laevis oocytes. Am J Physiol. 1992 Jun;262(6 Pt 1):C1520–C1530. doi: 10.1152/ajpcell.1992.262.6.C1520. [DOI] [PubMed] [Google Scholar]
  48. Prescott B., Renugopalakrishnan V., Glimcher M. J., Bhushan A., Thomas G. J., Jr A Raman spectroscopic study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry. 1986 May 20;25(10):2792–2798. doi: 10.1021/bi00358a009. [DOI] [PubMed] [Google Scholar]
  49. Puopolo K., Kumamoto C., Adachi I., Magner R., Forgac M. Differential expression of the "B" subunit of the vacuolar H(+)-ATPase in bovine tissues. J Biol Chem. 1992 Feb 25;267(6):3696–3706. [PubMed] [Google Scholar]
  50. Reenstra W. W., Sabolic I., Bae H. R., Verkman A. S. Protein kinase A dependent membrane protein phosphorylation and chloride conductance in endosomal vesicles from kidney cortex. Biochemistry. 1992 Jan 14;31(1):175–181. doi: 10.1021/bi00116a026. [DOI] [PubMed] [Google Scholar]
  51. Reijngoud D. J., Oud P. S., Kás J., Tager J. M. Relationship between medium pH and that of the lysosomal matrix as studied by two independent methods. Biochim Biophys Acta. 1976 Oct 5;448(2):290–302. doi: 10.1016/0005-2736(76)90243-1. [DOI] [PubMed] [Google Scholar]
  52. Richter H. P., Jung D., Passow H. Regulatory changes of membrane transport and ouabain binding during progesterone-induced maturation of Xenopus oocytes. J Membr Biol. 1984;79(3):203–210. doi: 10.1007/BF01871059. [DOI] [PubMed] [Google Scholar]
  53. Schmalzing G., Kröner S., Passow H. Evidence for intracellular sodium pumps in permeabilized Xenopus laevis oocytes. Biochem J. 1989 Jun 1;260(2):395–399. doi: 10.1042/bj2600395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schneider D. L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem. 1981 Apr 25;256(8):3858–3864. [PubMed] [Google Scholar]
  55. Scott D. M. Sodium cotransport systems: cellular, molecular and regulatory aspects. Bioessays. 1987 Aug;7(2):71–78. doi: 10.1002/bies.950070206. [DOI] [PubMed] [Google Scholar]
  56. Slack C., Warner A. E. Intracellular and intercellular potentials in the early amphibian embryo. J Physiol. 1973 Jul;232(2):313–330. doi: 10.1113/jphysiol.1973.sp010272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Slack C., Warner A. E., Warren R. L. The distribution of sodium and potassium in amphibian embryos during early development. J Physiol. 1973 Jul;232(2):297–312. doi: 10.1113/jphysiol.1973.sp010271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Taiz L. THE PLANT VACUOLE. J Exp Biol. 1992 Nov 1;172(Pt 1):113–122. doi: 10.1242/jeb.172.1.113. [DOI] [PubMed] [Google Scholar]
  59. Van Dyke R. W., Hornick C. A., Belcher J., Scharschmidt B. F., Havel R. J. Identification and characterization of ATP-dependent proton transport by rat liver multivesicular bodies. J Biol Chem. 1985 Sep 15;260(20):11021–11026. [PubMed] [Google Scholar]
  60. Wall D. A., Meleka I. An unusual lysosome compartment involved in vitellogenin endocytosis by Xenopus oocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1651–1664. doi: 10.1083/jcb.101.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wall D. A., Patel S. Multivesicular bodies play a key role in vitellogenin endocytosis by Xenopus oocytes. Dev Biol. 1987 Jan;119(1):275–289. doi: 10.1016/0012-1606(87)90229-6. [DOI] [PubMed] [Google Scholar]
  62. Wallace R. A., Misulovin Z., Wiley H. S. Growth of anuran oocytes in serum-supplemented medium. Reprod Nutr Dev. 1980;20(3A):699–708. doi: 10.1051/rnd:19800412. [DOI] [PubMed] [Google Scholar]
  63. Wallace R. A. Vitellogenesis and oocyte growth in nonmammalian vertebrates. Dev Biol (N Y 1985) 1985;1:127–177. doi: 10.1007/978-1-4615-6814-8_3. [DOI] [PubMed] [Google Scholar]
  64. Wiley H. S., Opresko L., Wallace R. A. New methods for the purification of vertebrate vitellogenin. Anal Biochem. 1979 Aug;97(1):145–152. doi: 10.1016/0003-2697(79)90338-5. [DOI] [PubMed] [Google Scholar]
  65. Zen K., Biwersi J., Periasamy N., Verkman A. S. Second messengers regulate endosomal acidification in Swiss 3T3 fibroblasts. J Cell Biol. 1992 Oct;119(1):99–110. doi: 10.1083/jcb.119.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zhang K., Wang Z. Q., Gluck S. A cytosolic inhibitor of vacuolar H(+)-ATPases from mammalian kidney. J Biol Chem. 1992 Jul 25;267(21):14539–14542. [PubMed] [Google Scholar]
  67. Zhang K., Wang Z. Q., Gluck S. Identification and partial purification of a cytosolic activator of vacuolar H(+)-ATPases from mammalian kidney. J Biol Chem. 1992 May 15;267(14):9701–9705. [PubMed] [Google Scholar]
  68. al-Awqati Q., Barasch J., Landry D. Chloride channels of intracellular organelles and their potential role in cystic fibrosis. J Exp Biol. 1992 Nov;172:245–266. doi: 10.1242/jeb.172.1.245. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES