Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 May 2;125(4):803–815. doi: 10.1083/jcb.125.4.803

Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum

PMCID: PMC2120064  PMID: 7514605

Abstract

CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane- spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. W., Perara E., Lesser C., Lingappa V. R. Sequences beyond the cleavage site influence signal peptide function. J Biol Chem. 1988 Oct 25;263(30):15791–15798. [PubMed] [Google Scholar]
  2. Audigier Y., Friedlander M., Blobel G. Multiple topogenic sequences in bovine opsin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5783–5787. doi: 10.1073/pnas.84.16.5783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braell W. A., Lodish H. F. The erythrocyte anion transport protein is contranslationally inserted into microsomes. Cell. 1982 Jan;28(1):23–31. doi: 10.1016/0092-8674(82)90371-3. [DOI] [PubMed] [Google Scholar]
  5. Brisson A., Mosser G., Huber R. Structure of soluble and membrane-bound human annexin V. J Mol Biol. 1991 Jul 20;220(2):199–203. doi: 10.1016/0022-2836(91)90002-n. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., Simoni R. D. Biogenesis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an integral glycoprotein of the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1674–1678. doi: 10.1073/pnas.81.6.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chavez R. A., Hall Z. W. The transmembrane topology of the amino terminus of the alpha subunit of the nicotinic acetylcholine receptor. J Biol Chem. 1991 Aug 15;266(23):15532–15538. [PubMed] [Google Scholar]
  8. Concha N. O., Head J. F., Kaetzel M. A., Dedman J. R., Seaton B. A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science. 1993 Sep 3;261(5126):1321–1324. doi: 10.1126/science.8362244. [DOI] [PubMed] [Google Scholar]
  9. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farinas J., Van Hoek A. N., Shi L. B., Erickson C., Verkman A. S. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching. Biochemistry. 1993 Nov 9;32(44):11857–11864. doi: 10.1021/bi00095a014. [DOI] [PubMed] [Google Scholar]
  11. Friedlander M., Blobel G. Bovine opsin has more than one signal sequence. 1985 Nov 28-Dec 4Nature. 318(6044):338–343. doi: 10.1038/318338a0. [DOI] [PubMed] [Google Scholar]
  12. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  14. Goldman B. M., Blobel G. In vitro biosynthesis, core glycosylation, and membrane integration of opsin. J Cell Biol. 1981 Jul;90(1):236–242. doi: 10.1083/jcb.90.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hasegawa H., Ma T., Skach W., Matthay M. A., Verkman A. S. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem. 1994 Feb 25;269(8):5497–5500. [PubMed] [Google Scholar]
  16. Hasegawa H., Zhang R., Dohrman A., Verkman A. S. Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization. Am J Physiol. 1993 Jan;264(1 Pt 1):C237–C245. doi: 10.1152/ajpcell.1993.264.1.C237. [DOI] [PubMed] [Google Scholar]
  17. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  18. Lewit-Bentley A., Morera S., Huber R., Bodo G. The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur J Biochem. 1992 Nov 15;210(1):73–77. doi: 10.1111/j.1432-1033.1992.tb17392.x. [DOI] [PubMed] [Google Scholar]
  19. Lipp J., Dobberstein B. The membrane-spanning segment of invariant chain (I gamma) contains a potentially cleavable signal sequence. Cell. 1986 Sep 26;46(7):1103–1112. doi: 10.1016/0092-8674(86)90710-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lipp J., Flint N., Haeuptle M. T., Dobberstein B. Structural requirements for membrane assembly of proteins spanning the membrane several times. J Cell Biol. 1989 Nov;109(5):2013–2022. doi: 10.1083/jcb.109.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ma T., Frigeri A., Tsai S. T., Verbavatz J. M., Verkman A. S. Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells. J Biol Chem. 1993 Oct 25;268(30):22756–22764. [PubMed] [Google Scholar]
  22. Mannella C. A. Structural analysis of mitochondrial pores. Experientia. 1990 Feb 15;46(2):137–145. doi: 10.1007/BF02027309. [DOI] [PubMed] [Google Scholar]
  23. Mayer A., Lill R., Neupert W. Translocation and insertion of precursor proteins into isolated outer membranes of mitochondria. J Cell Biol. 1993 Jun;121(6):1233–1243. doi: 10.1083/jcb.121.6.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller C., Hughes H. Hunting for the pore of voltage-gated channels. Curr Biol. 1992 Nov;2(11):573–575. doi: 10.1016/0960-9822(92)90146-2. [DOI] [PubMed] [Google Scholar]
  25. Miller C. Ion channel structure and function. Science. 1992 Oct 9;258(5080):240–241. doi: 10.1126/science.1384128. [DOI] [PubMed] [Google Scholar]
  26. Monier S., Van Luc P., Kreibich G., Sabatini D. D., Adesnik M. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol. 1988 Aug;107(2):457–470. doi: 10.1083/jcb.107.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nielsen S., Smith B. L., Christensen E. I., Knepper M. A., Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993 Jan;120(2):371–383. doi: 10.1083/jcb.120.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nothwehr S. F., Folz R. J., Gordon J. I. Uncoupling of co-translational translocation from signal peptidase processing in a mutant rat preapolipoprotein-A-IV with a deletion that includes the COOH-terminal region of its signal peptide. J Biol Chem. 1989 Mar 15;264(8):4642–4647. [PubMed] [Google Scholar]
  29. Nothwehr S. F., Gordon J. I. Eukaryotic signal peptide structure/function relationships. Identification of conformational features which influence the site and efficiency of co-translational proteolytic processing by site-directed mutagenesis of human pre(delta pro)apolipoprotein A-II. J Biol Chem. 1989 Mar 5;264(7):3979–3987. [PubMed] [Google Scholar]
  30. Nothwehr S. F., Gordon J. I. Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase. J Biol Chem. 1990 Oct 5;265(28):17202–17208. [PubMed] [Google Scholar]
  31. Perara E., Lingappa V. R. A former amino terminal signal sequence engineered to an internal location directs translocation of both flanking protein domains. J Cell Biol. 1985 Dec;101(6):2292–2301. doi: 10.1083/jcb.101.6.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pfaller R., Kleene R., Neupert W. Biogenesis of mitochondrial porin: the import pathway. Experientia. 1990 Feb 15;46(2):153–161. doi: 10.1007/BF02027311. [DOI] [PubMed] [Google Scholar]
  33. Pollack L., Atkinson P. H. Correlation of glycosylation forms with position in amino acid sequence. J Cell Biol. 1983 Aug;97(2):293–300. doi: 10.1083/jcb.97.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Preston G. M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11110–11114. doi: 10.1073/pnas.88.24.11110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992 Apr 17;256(5055):385–387. doi: 10.1126/science.256.5055.385. [DOI] [PubMed] [Google Scholar]
  36. Preston G. M., Jung J. S., Guggino W. B., Agre P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J Biol Chem. 1994 Jan 21;269(3):1668–1673. [PubMed] [Google Scholar]
  37. Preston G. M., Jung J. S., Guggino W. B., Agre P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem. 1993 Jan 5;268(1):17–20. [PubMed] [Google Scholar]
  38. Roitelman J., Olender E. H., Bar-Nun S., Dunn W. A., Jr, Simoni R. D. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. J Cell Biol. 1992 Jun;117(5):959–973. doi: 10.1083/jcb.117.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rothman R. E., Andrews D. W., Calayag M. C., Lingappa V. R. Construction of defined polytopic integral transmembrane proteins. The role of signal and stop transfer sequence permutations. J Biol Chem. 1988 Jul 25;263(21):10470–10480. [PubMed] [Google Scholar]
  40. Sabolić I., Valenti G., Verbavatz J. M., Van Hoek A. N., Verkman A. S., Ausiello D. A., Brown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol. 1992 Dec;263(6 Pt 1):C1225–C1233. doi: 10.1152/ajpcell.1992.263.6.C1225. [DOI] [PubMed] [Google Scholar]
  41. Schmid S. R., Spiess M. Deletion of the amino-terminal domain of asialoglycoprotein receptor H1 allows cleavage of the internal signal sequence. J Biol Chem. 1988 Nov 15;263(32):16886–16891. [PubMed] [Google Scholar]
  42. Shi L. B., Skach W. R., Verkman A. S. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. J Biol Chem. 1994 Apr 8;269(14):10417–10422. [PubMed] [Google Scholar]
  43. Silve S., Volland C., Garnier C., Jund R., Chevallier M. R., Haguenauer-Tsapis R. Membrane insertion of uracil permease, a polytopic yeast plasma membrane protein. Mol Cell Biol. 1991 Feb;11(2):1114–1124. doi: 10.1128/mcb.11.2.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Skach W. R., Calayag M. C., Lingappa V. R. Evidence for an alternate model of human P-glycoprotein structure and biogenesis. J Biol Chem. 1993 Apr 5;268(10):6903–6908. [PubMed] [Google Scholar]
  45. Smith B. L., Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem. 1991 Apr 5;266(10):6407–6415. [PubMed] [Google Scholar]
  46. Sugawara E., Nikaido H. Pore-forming activity of OmpA protein of Escherichia coli. J Biol Chem. 1992 Feb 5;267(4):2507–2511. [PubMed] [Google Scholar]
  47. Van Hoek A. N., Wiener M., Bicknese S., Miercke L., Biwersi J., Verkman A. S. Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy. Biochemistry. 1993 Nov 9;32(44):11847–11856. doi: 10.1021/bi00095a013. [DOI] [PubMed] [Google Scholar]
  48. Verbavatz J. M., Brown D., Sabolić I., Valenti G., Ausiello D. A., Van Hoek A. N., Ma T., Verkman A. S. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol. 1993 Nov;123(3):605–618. doi: 10.1083/jcb.123.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  50. Wessels H. P., Spiess M. Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell. 1988 Oct 7;55(1):61–70. doi: 10.1016/0092-8674(88)90009-8. [DOI] [PubMed] [Google Scholar]
  51. Wistow G. J., Pisano M. M., Chepelinsky A. B. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem Sci. 1991 May;16(5):170–171. doi: 10.1016/0968-0004(91)90065-4. [DOI] [PubMed] [Google Scholar]
  52. Zeidel M. L., Ambudkar S. V., Smith B. L., Agre P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry. 1992 Aug 25;31(33):7436–7440. doi: 10.1021/bi00148a002. [DOI] [PubMed] [Google Scholar]
  53. Zhang R., Skach W., Hasegawa H., van Hoek A. N., Verkman A. S. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J Cell Biol. 1993 Jan;120(2):359–369. doi: 10.1083/jcb.120.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhang R., van Hoek A. N., Biwersi J., Verkman A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry. 1993 Mar 30;32(12):2938–2941. doi: 10.1021/bi00063a002. [DOI] [PubMed] [Google Scholar]
  55. van Hoek A. N., Hom M. L., Luthjens L. H., de Jong M. D., Dempster J. A., van Os C. H. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem. 1991 Sep 5;266(25):16633–16635. [PubMed] [Google Scholar]
  56. van Hoek A. N., Verkman A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem. 1992 Sep 15;267(26):18267–18269. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES