Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 May 2;125(4):795–802. doi: 10.1083/jcb.125.4.795

Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins

PMCID: PMC2120070  PMID: 8188747

Abstract

Large scale aggregation of fluorescein-labeled immunoglobulin E (IgE) receptor complexes on the surface of RBL cells results in the co- aggregation of a large fraction of the lipophilic fluorescent probe 3,3'-dihexadecylindocarbocyanine (diI) that labels the plasma membranes much more uniformly in the absence of receptor aggregation. Most of the diI molecules that are localized in patches of aggregated receptors have lost their lateral mobility as determined by fluorescence photobleaching recovery. The diI outside of patches is mobile, and its mobility is similar to that in control cells without receptor aggregates. It is unlikely that the co-aggregation of diI with IgE receptors is due to specific interactions between these components, as two other lipophilic probes of different structures are also observed to redistribute with aggregated IgE receptors, and aggregation of two other cell surface antigens also results in the coredistribution of diI at the RBL cell surface. Quantitative analysis of CCD images of labeled cells reveals some differences in the spatial distributions of co- aggregated diI and IgE receptors. The results indicate that cross- linking of specific cell surface antigens causes a substantial change in the organization of the plasma membrane by redistributing pre- existing membrane domains or causing their formation.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apgar J. R., Mescher M. F. Agorins: major structural proteins of the plasma membrane skeleton of P815 tumor cells. J Cell Biol. 1986 Aug;103(2):351–360. doi: 10.1083/jcb.103.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basciano L. K., Berenstein E. H., Kmak L., Siraganian R. P. Monoclonal antibodies that inhibit IgE binding. J Biol Chem. 1986 Sep 5;261(25):11823–11831. [PubMed] [Google Scholar]
  3. Blank U., Ra C., Miller L., White K., Metzger H., Kinet J. P. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature. 1989 Jan 12;337(6203):187–189. doi: 10.1038/337187a0. [DOI] [PubMed] [Google Scholar]
  4. Bloom J. A., Webb W. W. Lipid diffusibility in the intact erythrocyte membrane. Biophys J. 1983 Jun;42(3):295–305. doi: 10.1016/S0006-3495(83)84397-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cowan A. E., Myles D. G., Koppel D. E. Lateral diffusion of the PH-20 protein on guinea pig sperm: evidence that barriers to diffusion maintain plasma membrane domains in mammalian sperm. J Cell Biol. 1987 Apr;104(4):917–923. doi: 10.1083/jcb.104.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dictus W. J., van Zoelen E. J., Tetteroo P. A., Tertoolen L. G., de Laat S. W., Bluemink J. G. Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization. Dev Biol. 1984 Jan;101(1):201–211. doi: 10.1016/0012-1606(84)90130-1. [DOI] [PubMed] [Google Scholar]
  7. Edidin M., Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991 Mar;112(6):1143–1150. doi: 10.1083/jcb.112.6.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feder T. J., Chang E. Y., Holowka D., Webb W. W. Disparate modulation of plasma membrane protein lateral mobility by various cell permeabilizing agents. J Cell Physiol. 1994 Jan;158(1):7–16. doi: 10.1002/jcp.1041580103. [DOI] [PubMed] [Google Scholar]
  9. Guo N. H., Her G. R., Reinhold V. N., Brennan M. J., Siraganian R. P., Ginsburg V. Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel alpha-galactosyl derivatives of ganglioside GD1b. J Biol Chem. 1989 Aug 5;264(22):13267–13272. [PubMed] [Google Scholar]
  10. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  11. Holowka D., Baird B. Recent evidence for common signalling mechanisms among immunoreceptors that recognize foreign antigens. Cell Signal. 1992 Jul;4(4):339–349. doi: 10.1016/0898-6568(92)90029-8. [DOI] [PubMed] [Google Scholar]
  12. Isersky C., Rivera J., Mims S., Triche T. J. The fate of IgE bound to rat basophilic leukemia cells. J Immunol. 1979 May;122(5):1926–1936. [PubMed] [Google Scholar]
  13. Jain M. K., White H. B., 3rd Long-range order in biomembranes. Adv Lipid Res. 1977;15:1–60. doi: 10.1016/b978-0-12-024915-2.50007-4. [DOI] [PubMed] [Google Scholar]
  14. Jovin T. M., Vaz W. L. Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Methods Enzymol. 1989;172:471–513. doi: 10.1016/s0076-6879(89)72030-9. [DOI] [PubMed] [Google Scholar]
  15. Lemay G., Zollinger M., Waksman G., Roques B. P., Crine P., Boileau G. Recombinant neutral endopeptidase-24.11 expressed in mouse neuroblastoma cells is associated with neurite membranes. Biochem J. 1990 Apr 15;267(2):447–452. doi: 10.1042/bj2670447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lisanti M. P., Sargiacomo M., Graeve L., Saltiel A. R., Rodriguez-Boulan E. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9557–9561. doi: 10.1073/pnas.85.24.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maurice M., Rogier E., Cassio D., Feldmann G. Formation of plasma membrane domains in rat hepatocytes and hepatoma cell lines in culture. J Cell Sci. 1988 May;90(Pt 1):79–92. doi: 10.1242/jcs.90.1.79. [DOI] [PubMed] [Google Scholar]
  18. Menon A. K., Holowka D., Baird B. Small oligomers of immunoglobulin E (IgE) cause large-scale clustering of IgE receptors on the surface of rat basophilic leukemia cells. J Cell Biol. 1984 Feb;98(2):577–583. doi: 10.1083/jcb.98.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Menon A. K., Holowka D., Webb W. W., Baird B. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J Cell Biol. 1986 Feb;102(2):541–550. doi: 10.1083/jcb.102.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Metzger H. The IgE-mast cell system as a paradigm for the study of antibody mechanisms. Immunol Rev. 1978;41:186–199. doi: 10.1111/j.1600-065x.1978.tb01465.x. [DOI] [PubMed] [Google Scholar]
  21. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prendergast F. G., Haugland R. P., Callahan P. J. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7333–7338. doi: 10.1021/bi00529a002. [DOI] [PubMed] [Google Scholar]
  23. Robertson D., Holowka D., Baird B. Cross-linking of immunoglobulin E-receptor complexes induces their interaction with the cytoskeleton of rat basophilic leukemia cells. J Immunol. 1986 Jun 15;136(12):4565–4572. [PubMed] [Google Scholar]
  24. Ryan T. A., Myers J., Holowka D., Baird B., Webb W. W. Molecular crowding on the cell surface. Science. 1988 Jan 1;239(4835):61–64. doi: 10.1126/science.2962287. [DOI] [PubMed] [Google Scholar]
  25. Scher M. G., Bloch R. J. The lipid bilayer of acetylcholine receptor clusters of cultured rat myotubes is organized into morphologically distinct domains. Exp Cell Res. 1991 Jul;195(1):79–91. doi: 10.1016/0014-4827(91)90502-l. [DOI] [PubMed] [Google Scholar]
  26. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  27. Spink C. H., Yeager M. D., Feigenson G. W. Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes. Biochim Biophys Acta. 1990 Mar 30;1023(1):25–33. doi: 10.1016/0005-2736(90)90005-9. [DOI] [PubMed] [Google Scholar]
  28. Stump R. F., Pfeiffer J. R., Seagrave J., Oliver J. M. Mapping gold-labeled IgE receptors on mast cells by scanning electron microscopy: receptor distributions revealed by silver enhancement, backscattered electron imaging, and digital image analysis. J Histochem Cytochem. 1988 May;36(5):493–502. doi: 10.1177/36.5.2965720. [DOI] [PubMed] [Google Scholar]
  29. Takagi S., Daibata M., Last T. J., Humphreys R. E., Parker D. C., Sairenji T. Intracellular localization of tyrosine kinase substrates beneath crosslinked surface immunoglobulins in B cells. J Exp Med. 1991 Aug 1;174(2):381–388. doi: 10.1084/jem.174.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Treistman S. N., Moynihan M. M., Wolf D. E. Influence of alcohols, temperature, and region on the mobility of lipids in neuronal membrane. Biochim Biophys Acta. 1987 Apr 9;898(2):109–120. doi: 10.1016/0005-2736(87)90029-0. [DOI] [PubMed] [Google Scholar]
  31. Watson L. P., Kang Y. H., Falk M. C. Cytochemical properties of osteoblast cell membrane domains. J Histochem Cytochem. 1989 Aug;37(8):1235–1246. doi: 10.1177/37.8.2526836. [DOI] [PubMed] [Google Scholar]
  32. Wolf D. E., Edidin M., Handyside A. H. Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev Biol. 1981 Jul 15;85(1):195–198. doi: 10.1016/0012-1606(81)90250-5. [DOI] [PubMed] [Google Scholar]
  33. Wolf D. E., Kinsey W., Lennarz W., Edidin M. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981 Jan 15;81(1):133–138. doi: 10.1016/0012-1606(81)90355-9. [DOI] [PubMed] [Google Scholar]
  34. Yechiel E., Barenholz Y., Henis Y. I. Lateral mobility and organization of phospholipids and proteins in rat myocyte membranes. Effects of aging and manipulation of lipid composition. J Biol Chem. 1985 Aug 5;260(16):9132–9136. [PubMed] [Google Scholar]
  35. Yechiel E., Edidin M. Micrometer-scale domains in fibroblast plasma membranes. J Cell Biol. 1987 Aug;105(2):755–760. doi: 10.1083/jcb.105.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES