Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 May 2;125(4):945–953. doi: 10.1083/jcb.125.4.945

Dynamic adhesion of CD8-positive cells to antibody-coated surfaces: the initial step is independent of microfilaments and intracellular domains of cell-binding molecules

PMCID: PMC2120072  PMID: 8188755

Abstract

Cell adhesion is a multistep, metabolically active process usually requiring several minutes or even hours to complete. This results in the formation of strong bonds that cannot be ruptured by mechanical forces encountered by living cells in their natural environment. However, the first seconds after contact formation are much more sensitive to external conditions and may be the critical step of adhesion. This step is very difficult to monitor without disturbing the observed system. We addressed this problem by studying the interaction between anti-CD8-coated or control surfaces and murine lymphoid cell lines bearing wild-type CD8 molecules, or genetically engineered molecules bearing extracellular CD8 domains and transmembranar and intracytoplasmic domains of class I histocompatibility molecules, or with extensive deletion of intracytoplasmic domains. We used a new method that consisted of monitoring the motion of cells driven along adhesive surfaces by a hydrodynamic force weaker than the reported strength of single ligand-receptor bonds, but sufficient to make free cells move with an easily detectable velocity of several micrometers per second. Cells exhibited short-term (< or = 0.5 s) adhesions to the surface with a frequency of about one event per 30-s period of contact. These events did not require specific antigen-antibody bonds. However, when anti-CD8 were present, strong adhesion was achieved within < 1 s, since most arrests were longer than a standard observation period of 1 min. This bond strengthening was not affected by cytochalasin, and it did not require intact intracellular domains on binding molecules. It is concluded that the initial step in strong adhesion may be viewed as a passive, diffusion-driven formation of a new specific bonds.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André P., Benoliel A. M., Capo C., Foa C., Buferne M., Boyer C., Schmitt-Verhulst A. M., Bongrand P. Use of conjugates made between a cytolytic T cell clone and target cells to study the redistribution of membrane molecules in cell contact areas. J Cell Sci. 1990 Oct;97(Pt 2):335–347. doi: 10.1242/jcs.97.2.335. [DOI] [PubMed] [Google Scholar]
  2. André P., Gabert J., Benoliel A. M., Capo C., Boyer C., Schmitt-Verhulst A. M., Malissen B., Bongrand P. Wild type and tailless CD8 display similar interaction with microfilaments during capping. J Cell Sci. 1991 Oct;100(Pt 2):329–337. doi: 10.1242/jcs.100.2.329. [DOI] [PubMed] [Google Scholar]
  3. Bongrand P., Golstein P. Reproducible dissociation of cellular aggregates with a wide range of calibrated shear forces: application to cytolytic lymphocyte target cell conjugates. J Immunol Methods. 1983 Mar 11;58(1-2):209–224. doi: 10.1016/0022-1759(83)90276-4. [DOI] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
  5. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  6. Evans E., Berk D., Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991 Apr;59(4):838–848. doi: 10.1016/S0006-3495(91)82296-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans E. Kinetics of granulocyte phagocytosis: rate limited by cytoplasmic viscosity and constrained by cell size. Cell Motil Cytoskeleton. 1989;14(4):544–551. doi: 10.1002/cm.970140411. [DOI] [PubMed] [Google Scholar]
  8. Foa C., Mège J. L., Capo C., Benoliel A. M., Galindo J. R., Bongrand P. T-cell-mediated cytolysis: analysis of killer and target cell deformability and deformation during conjugate formation. J Cell Sci. 1988 Apr;89(Pt 4):561–573. doi: 10.1242/jcs.89.4.561. [DOI] [PubMed] [Google Scholar]
  9. Golstein P., Goridis C., Schmitt-Verhulst A. M., Hayot B., Pierres A., van Agthoven A., Kaufmann Y., Eshhar Z., Pierres M. Lymphoid cell surface interaction structures detected using cytolysis-inhibiting monoclonal antibodies. Immunol Rev. 1982;68:5–42. doi: 10.1111/j.1600-065x.1982.tb01058.x. [DOI] [PubMed] [Google Scholar]
  10. Hammer D. A., Lauffenburger D. A. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J. 1987 Sep;52(3):475–487. doi: 10.1016/S0006-3495(87)83236-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hubbard B. B., Glacken M. W., Rodgers J. R., Rich R. R. The role of physical forces on cytotoxic T cell-target cell conjugate stability. J Immunol. 1990 Jun 1;144(11):4129–4138. [PubMed] [Google Scholar]
  12. Kammer G. M., Walter E. I., Medof M. E. Association of cytoskeletal re-organization with capping of the complement decay-accelerating factor on T lymphocytes. J Immunol. 1988 Nov 1;141(9):2924–2928. [PubMed] [Google Scholar]
  13. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  15. Letourneur F., Gabert J., Cosson P., Blanc D., Davoust J., Malissen B. A signaling role for the cytoplasmic segment of the CD8 alpha chain detected under limiting stimulatory conditions. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2339–2343. doi: 10.1073/pnas.87.6.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marks P. W., Hendey B., Maxfield F. R. Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration. J Cell Biol. 1991 Jan;112(1):149–158. doi: 10.1083/jcb.112.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marrack P., Shimonkevitz R., Hannum C., Haskins K., Kappler J. The major histocompatibility complex-restricted antigen receptor on T cells. IV. An antiidiotypic antibody predicts both antigen and I-specificity. J Exp Med. 1983 Nov 1;158(5):1635–1646. doi: 10.1084/jem.158.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mege J. L., Capo C., Benoliel A. M., Bongrand P. Determination of binding strength and kinetics of binding initiation. A model study made on the adhesive properties of P388D1 macrophage-like cells. Cell Biophys. 1986 Apr;8(2):141–160. doi: 10.1007/BF02788478. [DOI] [PubMed] [Google Scholar]
  20. Michl J., Pieczonka M. M., Unkeless J. C., Silverstein S. C. Effects of immobilized immune complexes on Fc- and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages. J Exp Med. 1979 Sep 19;150(3):607–621. doi: 10.1084/jem.150.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mège J. L., Capo C., André P., Benoliel A. M., Bongrand P. Mechanisms of leukocyte adhesion. Biorheology. 1990;27(3-4):433–444. doi: 10.3233/bir-1990-273-420. [DOI] [PubMed] [Google Scholar]
  22. Rees D. A., Lloyd C. W., Thom D. Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins. Nature. 1977 May 12;267(5607):124–128. doi: 10.1038/267124a0. [DOI] [PubMed] [Google Scholar]
  23. Singer S. J. Intercellular communication and cell-cell adhesion. Science. 1992 Mar 27;255(5052):1671–1677. doi: 10.1126/science.1313187. [DOI] [PubMed] [Google Scholar]
  24. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  25. Tees D. F., Coenen O., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Biophys J. 1993 Sep;65(3):1318–1334. doi: 10.1016/S0006-3495(93)81180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tha S. P., Shuster J., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys J. 1986 Dec;50(6):1117–1126. doi: 10.1016/S0006-3495(86)83556-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tissot O., Pierres A., Foa C., Delaage M., Bongrand P. Motion of cells sedimenting on a solid surface in a laminar shear flow. Biophys J. 1992 Jan;61(1):204–215. doi: 10.1016/S0006-3495(92)81827-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uyeda T. Q., Warrick H. M., Kron S. J., Spudich J. A. Quantized velocities at low myosin densities in an in vitro motility assay. Nature. 1991 Jul 25;352(6333):307–311. doi: 10.1038/352307a0. [DOI] [PubMed] [Google Scholar]
  29. Wattenbarger M. R., Graves D. J., Lauffenburger D. A. Specific adhesion of glycophorin liposomes to a lectin surface in shear flow. Biophys J. 1990 Apr;57(4):765–777. doi: 10.1016/S0006-3495(90)82597-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES