Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Aug 2;126(4):1089–1097. doi: 10.1083/jcb.126.4.1089

The cytoplasmic domain of the myelin P0 protein influences the adhesive interactions of its extracellular domain

PMCID: PMC2120129  PMID: 7519618

Abstract

The extracellular domain of the myelin P0 protein is believed to engage in adhesive interactions and thus hold the myelin membrane compact. We have previously shown that P0 can behave as a homophilic adhesion molecule through interactions of its extracellular domains (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.) 344:871-872). To determine if the cytoplasmic domain of P0 must be intact for the extracellular domains to adhere, we compared the adhesive capabilities of P0 proteins truncated at the COOH-terminal to the full-length P0 protein. P0 cDNAs lacking nucleotides coding for the last 52 or 59 amino acids were transfected into CHO cells, and surface expression of the truncated proteins was assessed by immunofluorescence, surface labeling followed by immunoprecipitation, and an ELISA. Cell lines were chosen that expressed at least equivalent amounts of the truncated P0 proteins at the surface as did a cell line expressing the full-length P0. The adhesive properties of these three cell lines were compared. It was found that when a suspension of single cells was allowed to aggregate for a period of 60 min, only the cells expressing the full-length P0 had formed large aggregates, while the cells expressing the truncated P0 molecules were still mostly single cells indistinguishable from the control cells. Furthermore, 25-30% of the full-length P0 was insoluble in NP40, indicative of an interaction with the cytoskeleton, whereas only 5-10% of P0 lacking 52 amino acids and none of P0 lacking 59 amino acids were insoluble. These results suggest that for the extracellular domain of P0 to behave as a homophilic adhesion molecule, its cytoplasmic domain must be intact, and most probably, it is interacting with the cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunden K. R., Poduslo J. F. A phorbol ester-sensitive kinase catalyzes the phosphorylation of P0 glycoprotein in myelin. J Neurochem. 1987 Dec;49(6):1863–1872. doi: 10.1111/j.1471-4159.1987.tb02448.x. [DOI] [PubMed] [Google Scholar]
  2. D'Urso D., Brophy P. J., Staugaitis S. M., Gillespie C. S., Frey A. B., Stempak J. G., Colman D. R. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron. 1990 Mar;4(3):449–460. doi: 10.1016/0896-6273(90)90057-m. [DOI] [PubMed] [Google Scholar]
  3. Ding Y., Brunden K. R. The cytoplasmic domain of myelin glycoprotein P0 interacts with negatively charged phospholipid bilayers. J Biol Chem. 1994 Apr 8;269(14):10764–10770. [PubMed] [Google Scholar]
  4. Doherty P., Fruns M., Seaton P., Dickson G., Barton C. H., Sears T. A., Walsh F. S. A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature. 1990 Feb 1;343(6257):464–466. doi: 10.1038/343464a0. [DOI] [PubMed] [Google Scholar]
  5. Everly J. L., Brady R. O., Quarles R. H. Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein. J Neurochem. 1973 Aug;21(2):329–334. doi: 10.1111/j.1471-4159.1973.tb04253.x. [DOI] [PubMed] [Google Scholar]
  6. Filbin M. T., Tennekoon G. I. High level of expression of the myelin protein P0 in Chinese hamster ovary cells. J Neurochem. 1990 Aug;55(2):500–505. doi: 10.1111/j.1471-4159.1990.tb04163.x. [DOI] [PubMed] [Google Scholar]
  7. Filbin M. T., Tennekoon G. I. Homophilic adhesion of the myelin P0 protein requires glycosylation of both molecules in the homophilic pair. J Cell Biol. 1993 Jul;122(2):451–459. doi: 10.1083/jcb.122.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Filbin M. T., Tennekoon G. I. Myelin P0-protein, more than just a structural protein? Bioessays. 1992 Aug;14(8):541–547. doi: 10.1002/bies.950140808. [DOI] [PubMed] [Google Scholar]
  9. Filbin M. T., Tennekoon G. I. The role of complex carbohydrates in adhesion of the myelin protein, P0. Neuron. 1991 Nov;7(5):845–855. doi: 10.1016/0896-6273(91)90286-9. [DOI] [PubMed] [Google Scholar]
  10. Filbin M. T., Walsh F. S., Trapp B. D., Pizzey J. A., Tennekoon G. I. Role of myelin P0 protein as a homophilic adhesion molecule. Nature. 1990 Apr 26;344(6269):871–872. doi: 10.1038/344871a0. [DOI] [PubMed] [Google Scholar]
  11. Frost E., Williams J. Mapping temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology. 1978 Nov;91(1):39–50. doi: 10.1016/0042-6822(78)90353-7. [DOI] [PubMed] [Google Scholar]
  12. Giese K. P., Martini R., Lemke G., Soriano P., Schachner M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell. 1992 Nov 13;71(4):565–576. doi: 10.1016/0092-8674(92)90591-y. [DOI] [PubMed] [Google Scholar]
  13. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  14. Griffith L. S., Schmitz B., Schachner M. L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion molecule P0. J Neurosci Res. 1992 Dec;33(4):639–648. doi: 10.1002/jnr.490330417. [DOI] [PubMed] [Google Scholar]
  15. Gumbiner B. M. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron. 1993 Oct;11(4):551–564. doi: 10.1016/0896-6273(93)90068-3. [DOI] [PubMed] [Google Scholar]
  16. Hayasaka K., Himoro M., Sato W., Takada G., Uyemura K., Shimizu N., Bird T. D., Conneally P. M., Chance P. F. Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet. 1993 Sep;5(1):31–34. doi: 10.1038/ng0993-31. [DOI] [PubMed] [Google Scholar]
  17. Hirano S., Kimoto N., Shimoyama Y., Hirohashi S., Takeichi M. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell. 1992 Jul 24;70(2):293–301. doi: 10.1016/0092-8674(92)90103-j. [DOI] [PubMed] [Google Scholar]
  18. Huang M. M., Lipfert L., Cunningham M., Brugge J. S., Ginsberg M. H., Shattil S. J. Adhesive ligand binding to integrin alpha IIb beta 3 stimulates tyrosine phosphorylation of novel protein substrates before phosphorylation of pp125FAK. J Cell Biol. 1993 Jul;122(2):473–483. doi: 10.1083/jcb.122.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ishaque A., Roomi M. W., Szymanska I., Kowalski S., Eylar E. H. The PO glycoprotein of peripheral nerve myelin. Can J Biochem. 1980 Oct;58(10):913–921. doi: 10.1139/o80-125. [DOI] [PubMed] [Google Scholar]
  20. Kirschner D. A., Ganser A. L. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature. 1980 Jan 10;283(5743):207–210. doi: 10.1038/283207a0. [DOI] [PubMed] [Google Scholar]
  21. Kitamura K., Suzuki M., Uyemura K. Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane. Biochim Biophys Acta. 1976 Dec 14;455(3):806–816. doi: 10.1016/0005-2736(76)90050-x. [DOI] [PubMed] [Google Scholar]
  22. Kulkens T., Bolhuis P. A., Wolterman R. A., Kemp S., te Nijenhuis S., Valentijn L. J., Hensels G. W., Jennekens F. G., de Visser M., Hoogendijk J. E. Deletion of the serine 34 codon from the major peripheral myelin protein P0 gene in Charcot-Marie-Tooth disease type 1B. Nat Genet. 1993 Sep;5(1):35–39. doi: 10.1038/ng0993-35. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee S. J., Nathans D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J Biol Chem. 1988 Mar 5;263(7):3521–3527. [PubMed] [Google Scholar]
  26. Lemke G., Axel R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell. 1985 Mar;40(3):501–508. doi: 10.1016/0092-8674(85)90198-9. [DOI] [PubMed] [Google Scholar]
  27. Lemke G., Lamar E., Patterson J. Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron. 1988 Mar;1(1):73–83. doi: 10.1016/0896-6273(88)90211-5. [DOI] [PubMed] [Google Scholar]
  28. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nagafuchi A., Takeichi M., Tsukita S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell. 1991 May 31;65(5):849–857. doi: 10.1016/0092-8674(91)90392-c. [DOI] [PubMed] [Google Scholar]
  30. Peden K. W., Rutkowski J. L., Gilbert M., Tennekoon G. I. Production of Schwann cell lines using a regulated oncogene. Ann N Y Acad Sci. 1990;605:286–293. doi: 10.1111/j.1749-6632.1990.tb42402.x. [DOI] [PubMed] [Google Scholar]
  31. Sakamoto Y., Kitamura K., Yoshimura K., Nishijima T., Uyemura K. Complete amino acid sequence of PO protein in bovine peripheral nerve myelin. J Biol Chem. 1987 Mar 25;262(9):4208–4214. [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schneider-Schaulies J., von Brunn A., Schachner M. Recombinant peripheral myelin protein P0 confers both adhesion and neurite outgrowth-promoting properties. J Neurosci Res. 1990 Nov;27(3):286–297. doi: 10.1002/jnr.490270307. [DOI] [PubMed] [Google Scholar]
  34. Suzuki M., Sakamoto Y., Kitamura K., Fukunaga K., Yamamoto H., Miyamoto E., Uyemura K. Phosphorylation of P0 glycoprotein in peripheral nerve myelin. J Neurochem. 1990 Dec;55(6):1966–1971. doi: 10.1111/j.1471-4159.1990.tb05783.x. [DOI] [PubMed] [Google Scholar]
  35. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wells C. A., Saavedra R. A., Inouye H., Kirschner D. A. Myelin P0-glycoprotein: predicted structure and interactions of extracellular domain. J Neurochem. 1993 Dec;61(6):1987–1995. doi: 10.1111/j.1471-4159.1993.tb07434.x. [DOI] [PubMed] [Google Scholar]
  37. Wheelock M. J., Buck C. A., Bechtol K. B., Damsky C. H. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J Cell Biochem. 1987 Jul;34(3):187–202. doi: 10.1002/jcb.240340305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES