Abstract
Mouse embryonic stem (ES) cells differentiate in vitro into a variety of cell types including spontaneously contracting cardiac myocytes. We have utilized the ES cell differentiation culture system to study the development of the cardiac contractile apparatus in vitro. Difficulties associated with the cellular and developmental heterogeneity of this system have been overcome by establishing attached cultures of differentiating ES cells, and by the micro-dissection of the contracting cardiac myocytes from culture. The time of onset and duration of continuous contractile activity of the individual contracting myocytes was determined by daily visual inspection of the cultures. A functional assay was used to directly measure force production in ES cell-derived cardiac myocyte preparations. The forces produced during spontaneous contractions in the membrane intact preparation, and during activation by Ca2+ subsequent to chemical permeabilization of the surface membranes were determined in the same preparation. Results showed a transition in contractile sensitivity to Ca2+ in ES cell-derived cardiac myocytes during development in vitro. Cardiac preparations isolated from culture following the initiation of spontaneous contractile activity showed marked sensitivity of the contractile apparatus to activation by Ca2+. However, the Ca2+ sensitivity of tension development was significantly decreased in preparations isolated from culture following prolonged continuous contractile activity in vitro. The alteration in Ca2+ sensitivity obtained in vitro paralleled that observed during murine cardiac myocyte development in vivo. This provides functional evidence that ES cell-derived cardiac myocytes recapitulate cardiogenesis in vitro. Alterations in Ca2+ sensitivity could be important in optimizing the cardiac contractile response to variations in the myoplasmic Ca2+ transient during embryogenesis. The potential to stably transfect ES cells with cardiac regulatory genes, together with the availability of a functional assay using control and genetically modified ES cell- derived cardiac myocytes, will permit determination of the functional significance of altered cardiac gene expression during cardiogenesis in vitro.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Kentish J. C. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol. 1985 Sep;17(9):821–840. doi: 10.1016/s0022-2828(85)80097-3. [DOI] [PubMed] [Google Scholar]
- Anderson P. A., Moore G. E., Nassar R. N. Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res. 1988 Oct;63(4):742–747. doi: 10.1161/01.res.63.4.742. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Zhu H., Knowlton K. U., Miller-Hance W., van-Bilsen M., O'Brien T. X., Evans S. M. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993;55:77–95. doi: 10.1146/annurev.ph.55.030193.000453. [DOI] [PubMed] [Google Scholar]
- Doetschman T. C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985 Jun;87:27–45. [PubMed] [Google Scholar]
- Fabiato A. Calcium release in skinned cardiac cells: variations with species, tissues, and development. Fed Proc. 1982 May;41(7):2238–2244. [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci. 1978 Apr 28;307:491–522. doi: 10.1111/j.1749-6632.1978.tb41979.x. [DOI] [PubMed] [Google Scholar]
- Ganim J. R., Luo W., Ponniah S., Grupp I., Kim H. W., Ferguson D. G., Kadambi V., Neumann J. C., Doetschman T., Kranias E. G. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res. 1992 Nov;71(5):1021–1030. doi: 10.1161/01.res.71.5.1021. [DOI] [PubMed] [Google Scholar]
- Godt R. E., Fogaça R. T., Nosek T. M. Changes in force and calcium sensitivity in the developing avian heart. Can J Physiol Pharmacol. 1991 Nov;69(11):1692–1697. doi: 10.1139/y91-251. [DOI] [PubMed] [Google Scholar]
- Godt R. E., Lindley B. D. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol. 1982 Aug;80(2):279–297. doi: 10.1085/jgp.80.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klitzner T. S., Friedman W. F. A diminished role for the sarcoplasmic reticulum in newborn myocardial contraction: effects of ryanodine. Pediatr Res. 1989 Aug;26(2):98–101. doi: 10.1203/00006450-198908000-00005. [DOI] [PubMed] [Google Scholar]
- Lyons G. E., Schiaffino S., Sassoon D., Barton P., Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990 Dec;111(6 Pt 1):2427–2436. doi: 10.1083/jcb.111.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAuliffe J. J., Gao L. Z., Solaro R. J. Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. Circ Res. 1990 May;66(5):1204–1216. doi: 10.1161/01.res.66.5.1204. [DOI] [PubMed] [Google Scholar]
- Metzger J. M., Greaser M. L., Moss R. L. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol. 1989 May;93(5):855–883. doi: 10.1085/jgp.93.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzger J. M., Moss R. L. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol. 1987 Dec;393:727–742. doi: 10.1113/jphysiol.1987.sp016850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzger J. M., Parmacek M. S., Barr E., Pasyk K., Lin W. I., Cochrane K. L., Field L. J., Leiden J. M. Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9036–9040. doi: 10.1073/pnas.90.19.9036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller-Hance W. C., LaCorbiere M., Fuller S. J., Evans S. M., Lyons G., Schmidt C., Robbins J., Chien K. R. In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J Biol Chem. 1993 Nov 25;268(33):25244–25252. [PubMed] [Google Scholar]
- Muthuchamy M., Pajak L., Howles P., Doetschman T., Wieczorek D. F. Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol. 1993 Jun;13(6):3311–3323. doi: 10.1128/mcb.13.6.3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakanishi T., Seguchi M., Takao A. Development of the myocardial contractile system. Experientia. 1988 Dec 1;44(11-12):936–944. doi: 10.1007/BF01939887. [DOI] [PubMed] [Google Scholar]
- Nassar R., Malouf N. N., Kelly M. B., Oakeley A. E., Anderson P. A. Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res. 1991 Dec;69(6):1470–1475. doi: 10.1161/01.res.69.6.1470. [DOI] [PubMed] [Google Scholar]
- Reiser P. J., Greaser M. L., Moss R. L. Developmental changes in troponin T isoform expression and tension production in chicken single skeletal muscle fibres. J Physiol. 1992 Apr;449:573–588. doi: 10.1113/jphysiol.1992.sp019102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachat F. H., Diamond M. S., Brandt P. W. Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol. 1987 Dec 5;198(3):551–554. doi: 10.1016/0022-2836(87)90300-7. [DOI] [PubMed] [Google Scholar]
- Sissman N. J. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol. 1970 Feb;25(2):141–148. doi: 10.1016/0002-9149(70)90575-8. [DOI] [PubMed] [Google Scholar]
- Sweitzer N. K., Moss R. L. The effect of altered temperature on Ca2(+)-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation. J Gen Physiol. 1990 Dec;96(6):1221–1245. doi: 10.1085/jgp.96.6.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez A., Jones W. K., Gulick J., Doetschman T., Robbins J. Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J Biol Chem. 1991 Nov 25;266(33):22419–22426. [PubMed] [Google Scholar]
- Williams R. L., Hilton D. J., Pease S., Willson T. A., Stewart C. L., Gearing D. P., Wagner E. F., Metcalf D., Nicola N. A., Gough N. M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988 Dec 15;336(6200):684–687. doi: 10.1038/336684a0. [DOI] [PubMed] [Google Scholar]
- Wobus A. M., Wallukat G., Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation. 1991 Dec;48(3):173–182. doi: 10.1111/j.1432-0436.1991.tb00255.x. [DOI] [PubMed] [Google Scholar]
- Zak R. Cell proliferation during cardiac growth. Am J Cardiol. 1973 Feb;31(2):211–219. doi: 10.1016/0002-9149(73)91034-5. [DOI] [PubMed] [Google Scholar]