Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Aug 1;126(3):765–772. doi: 10.1083/jcb.126.3.765

NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone

PMCID: PMC2120144  PMID: 8045939

Abstract

Recent reports have suggested that production of superoxide or other reactive oxygen species by activated osteoclasts may play a role in the complex process of bone resorption; however, the enzyme responsible for production of superoxide by osteoclasts has not been characterized. To determine if osteoclasts express NADPH-oxidase, a superoxide-generating enzyme found in phagocytic leukocytes, immunohistochemical studies were performed on tibia from 1-5-d-old rats using mAbs 449 and 48 and an antiserum specific for p47-phox. These antibodies recognize epitopes on the alpha and beta subunits of cytochrome b558, respectively, and the p47 cytosolic component of NADPH-oxidase. We found that osteoclasts attached to bone surfaces in tibia expressed all three components, as did mature polymorphonuclear and some mononuclear leukocytes in the bone marrow. In many adherent osteoclasts, the cytochrome b558 subunits were localized to the ruffled-border and bone interfaces. Studies were also performed on mature rat tibia that had undergone controlled fracture. By two weeks the healing fractures develop a callus rich in actively resorbing osteoclasts. Osteoclasts within the calluses, and attached to bone surface, also expressed the cytochrome b558 proteins. In addition to demonstrating the expression of NADPH-oxidase, the active production of superoxide by osteoclasts was also demonstrated in situ in freshly isolated tibia using 3,3'-diaminobenzidine (DAB)-Mn2+, a histochemical method specific for superoxide localization. Osteoclasts attached to bone surfaces contained deposits of oxidized DAB which were observed by light microscopy. Nonstimulated polymorphonuclear and mononuclear leukocytes in the bone marrow did not contain DAB deposits unless stimulated with phorbol myristate acetate, a known activator of NADPH-oxidase. These findings indicate that osteoclasts contain NADPH-oxidase, and during the process of resorbing bone, are actively producing superoxide.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babbs C. F., Cregor M. D., Turek J. J., Badylak S. F. Endothelial superoxide production in buffer perfused rat lungs, demonstrated by a new histochemical technique. Lab Invest. 1991 Oct;65(4):484–496. [PubMed] [Google Scholar]
  2. Babbs C. F., Cregor M. D., Turek J. J., Badylak S. F. Endothelial superoxide production in the isolated rat heart during early reperfusion after ischemia. A histochemical study. Am J Pathol. 1991 Nov;139(5):1069–1080. [PMC free article] [PubMed] [Google Scholar]
  3. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Badwey J. A., Robinson J. M., Lazdins J. K., Briggs R. T., Karnovsky M. J., Karnovsky M. L. Comparative biochemical and cytochemical studies on superoxide and peroxide in mouse macrophages. J Cell Physiol. 1983 May;115(2):208–216. doi: 10.1002/jcp.1041150216. [DOI] [PubMed] [Google Scholar]
  5. Bax B. E., Alam A. S., Banerji B., Bax C. M., Bevis P. J., Stevens C. R., Moonga B. S., Blake D. R., Zaidi M. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1153–1158. doi: 10.1016/s0006-291x(05)80311-0. [DOI] [PubMed] [Google Scholar]
  6. Beyer W. F., Jr, Fridovich I. Characterization of a superoxide dismutase mimic prepared from desferrioxamine and MnO2. Arch Biochem Biophys. 1989 May 15;271(1):149–156. doi: 10.1016/0003-9861(89)90265-8. [DOI] [PubMed] [Google Scholar]
  7. Briggs R. T., Robinson J. M., Karnovsky M. L., Karnovsky M. J. Superoxide production by polymorphonuclear leukocytes. A cytochemical approach. Histochemistry. 1986;84(4-6):371–378. doi: 10.1007/BF00482965. [DOI] [PubMed] [Google Scholar]
  8. Cole A. A., Walters L. M. Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold-embedding in plastic. J Histochem Cytochem. 1987 Feb;35(2):203–206. doi: 10.1177/35.2.3540104. [DOI] [PubMed] [Google Scholar]
  9. Curnutte J. T., Karnovsky M. L., Babior B. M. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement. J Clin Invest. 1976 Apr;57(4):1059–1067. doi: 10.1172/JCI108348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
  11. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  12. GONZALES F., KARNOVSKY M. J. Electron microscopy of osteoclasts in healing fracturees of rat bone. J Biophys Biochem Cytol. 1961 Feb;9:299–316. doi: 10.1083/jcb.9.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garrett I. R., Boyce B. F., Oreffo R. O., Bonewald L., Poser J., Mundy G. R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990 Mar;85(3):632–639. doi: 10.1172/JCI114485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  15. Hagenaars C. E., van der Kraan A. A., Kawilarang-de Haas E. W., Visser J. W., Nijweide P. J. Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner. 1989 May;6(2):179–189. doi: 10.1016/0169-6009(89)90049-4. [DOI] [PubMed] [Google Scholar]
  16. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  17. Kahn A. J., Stewart C. C., Teitelbaum S. L. Contact-mediated bone resorption by human monocytes in vitro. Science. 1978 Mar 3;199(4332):988–990. doi: 10.1126/science.622581. [DOI] [PubMed] [Google Scholar]
  18. Key L. L., Jr, Ries W. L., Taylor R. G., Hays B. D., Pitzer B. L. Oxygen derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction. Bone. 1990;11(2):115–119. doi: 10.1016/8756-3282(90)90058-7. [DOI] [PubMed] [Google Scholar]
  19. Kono Y., Takahashi M. A., Asada K. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts. Arch Biochem Biophys. 1976 Jun;174(2):454–462. doi: 10.1016/0003-9861(76)90373-8. [DOI] [PubMed] [Google Scholar]
  20. Maly F. E., Nakamura M., Gauchat J. F., Urwyler A., Walker C., Dahinden C. A., Cross A. R., Jones O. T., de Weck A. L. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. J Immunol. 1989 Feb 15;142(4):1260–1267. [PubMed] [Google Scholar]
  21. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  22. Meier B., Jesaitis A. J., Emmendörffer A., Roesler J., Quinn M. T. The cytochrome b-558 molecules involved in the fibroblast and polymorphonuclear leucocyte superoxide-generating NADPH oxidase systems are structurally and genetically distinct. Biochem J. 1993 Jan 15;289(Pt 2):481–486. doi: 10.1042/bj2890481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakamura M., Murakami M., Koga T., Tanaka Y., Minakami S. Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood. 1987 May;69(5):1404–1408. [PubMed] [Google Scholar]
  24. Nakamura M., Sendo S., van Zwieten R., Koga T., Roos D., Kanegasaki S. Immunocytochemical discovery of the 22- to 23-Kd subunit of cytochrome b558 at the surface of human peripheral phagocytes. Blood. 1988 Nov;72(5):1550–1552. [PubMed] [Google Scholar]
  25. Parkos C. A., Allen R. A., Cochrane C. G., Jesaitis A. J. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987 Sep;80(3):732–742. doi: 10.1172/JCI113128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Patriarca P., Dri P., Kakinuma K., Tedesco F., Rossi F. Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2. Biochim Biophys Acta. 1975 Apr 7;385(2):380–386. doi: 10.1016/0304-4165(75)90367-0. [DOI] [PubMed] [Google Scholar]
  27. Radeke H. H., Cross A. R., Hancock J. T., Jones O. T., Nakamura M., Kaever V., Resch K. Functional expression of NADPH oxidase components (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells. J Biol Chem. 1991 Nov 5;266(31):21025–21029. [PubMed] [Google Scholar]
  28. Ries W. L., Key L. L., Jr, Rodriguiz R. M. Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic. J Bone Miner Res. 1992 Aug;7(8):931–939. doi: 10.1002/jbmr.5650070810. [DOI] [PubMed] [Google Scholar]
  29. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  30. Rotrosen D., Yeung C. L., Leto T. L., Malech H. L., Kwong C. H. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science. 1992 Jun 5;256(5062):1459–1462. doi: 10.1126/science.1318579. [DOI] [PubMed] [Google Scholar]
  31. SELYE H. Induction by aminoacetonitrile of a predisposition to giant callus formation. Br J Exp Pathol. 1957 Apr;38(2):186–189. [PMC free article] [PubMed] [Google Scholar]
  32. Schneider G. B., Relfson M. A bone marrow fraction enriched for granulocyte-macrophage progenitors gives rise to osteoclasts in vitro. Bone. 1988;9(5):303–308. doi: 10.1016/8756-3282(88)90014-2. [DOI] [PubMed] [Google Scholar]
  33. Segal A. W., Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993 Feb;18(2):43–47. doi: 10.1016/0968-0004(93)90051-n. [DOI] [PubMed] [Google Scholar]
  34. Segal A. W., Jones O. T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature. 1978 Nov 30;276(5687):515–517. doi: 10.1038/276515a0. [DOI] [PubMed] [Google Scholar]
  35. Seligman A. M., Karnovsky M. J., Wasserkrug H. L., Hanker J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol. 1968 Jul;38(1):1–14. doi: 10.1083/jcb.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sminia T., Dijkstra C. D. The origin of osteoclasts: an immunohistochemical study on macrophages and osteoclasts in embryonic rat bone. Calcif Tissue Int. 1986 Oct;39(4):263–266. doi: 10.1007/BF02555216. [DOI] [PubMed] [Google Scholar]
  37. Steinbeck M. J., Khan A. U., Appel W. H., Jr, Karnovsky M. J. The DAB-Mn++ cytochemical method revisited: validation of specificity for superoxide. J Histochem Cytochem. 1993 Nov;41(11):1659–1667. doi: 10.1177/41.11.8292156. [DOI] [PubMed] [Google Scholar]
  38. Suda N., Morita I., Kuroda T., Murota S. Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta. 1993 Jul 11;1157(3):318–323. doi: 10.1016/0304-4165(93)90116-p. [DOI] [PubMed] [Google Scholar]
  39. Tsukada T., Tippens D., Gordon D., Ross R., Gown A. M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am J Pathol. 1987 Jan;126(1):51–60. [PMC free article] [PubMed] [Google Scholar]
  40. Verhoeven A. J., Bolscher B. G., Meerhof L. J., van Zwieten R., Keijer J., Weening R. S., Roos D. Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood. 1989 May 1;73(6):1686–1694. [PubMed] [Google Scholar]
  41. Verhoeven A. J., Leusen J. H., Kessels G. C., Hilarius P. M., de Bont D. B., Liskamp R. M. Inhibition of neutrophil NADPH oxidase assembly by a myristoylated pseudosubstrate of protein kinase C. J Biol Chem. 1993 Sep 5;268(25):18593–18598. [PubMed] [Google Scholar]
  42. Zheng M. H., Papadimitriou J. M., Nicholson G. C. A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells. Histochem J. 1991 Apr;23(4):180–188. doi: 10.1007/BF01046589. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES