Abstract
Previously, a 29-kD axonemal polypeptide (p29) that copurifies with 22S dynein has been shown to be phosphorylated in a cAMP- and Ca(2+)- sensitive manner, consistent with a role for this molecule in the signal transduction cascade leading to fast forward swimming in Paramecium tetraurelia (Hamasaki, T., K. Barkalow, J. Richmond, and P. Satir. 1991. Proc. Natl. Acad. Sci. USA. 88:7912-7922). This study demonstrates the nature of the relationship between p29 and 22S dynein. Chaotropic agents can be used to separate p29 fractions from 22S dynein. When extracted p29 is exchanged into physiological buffers, it regains the ability to recombine with 22S dynein with an apparent dissociation constant of 25 nM; no recombination is seen with 14S dynein or with unrelated control proteins. p29 from Paramecium will also recombine with Tetrahymena 22 but not 14S dynein. After chymotryptic digestion of 22S dynein, p29 preferentially binds to a single-headed fragment, homologous to the alpha H chain of Tetrahymena 22S dynein. 22S dynein treated in vitro by Paramecium protein kinase A in the presence of cAMP and ATP to phosphorylate p29 translocates bovine brain microtubules significantly (1.53x; p < 0.001) faster than before phosphorylation. Similarly, 22S dynein reconstituted in vitro with thiophosphorylated p29 translocates microtubules significantly (1.31x; p < 0.001) faster than controls reconstituted with nonthiophosphorylated p29. p29 is the only moiety thiophosphorylated in the reconstituted dynein. We conclude that p29 functions as a 22S dynein regulatory light chain in that it alone is sufficient to control the rate of microtubule translocation by changes in its phosphorylation state.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barkalow K., Avolio J., Holwill M. E., Hamasaki T., Satir P. Structural and geometrical constraints on the outer dynein arm in situ. Cell Motil Cytoskeleton. 1994;27(4):299–312. doi: 10.1002/cm.970270403. [DOI] [PubMed] [Google Scholar]
- Beckwith S. M., Asai D. J. Ciliary dynein of Paramecium tetraurelia: photolytic maps of the three heavy chains. Cell Motil Cytoskeleton. 1993;24(1):29–38. doi: 10.1002/cm.970240104. [DOI] [PubMed] [Google Scholar]
- Bonini N. M., Gustin M. C., Nelson D. L. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motil Cytoskeleton. 1986;6(3):256–272. doi: 10.1002/cm.970060303. [DOI] [PubMed] [Google Scholar]
- Bonini N. M., Nelson D. L. Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J Cell Biol. 1988 May;106(5):1615–1623. doi: 10.1083/jcb.106.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonini N. M., Nelson D. L. Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium. J Cell Sci. 1990 Feb;95(Pt 2):219–230. doi: 10.1242/jcs.95.2.219. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton. 1987;8(1):68–75. doi: 10.1002/cm.970080110. [DOI] [PubMed] [Google Scholar]
- Butler T. M., Pacifico D. S., Siegman M. J. ADP release from myosin in permeabilized smooth muscle. Am J Physiol. 1989 Jan;256(1 Pt 1):C59–C66. doi: 10.1152/ajpcell.1989.256.1.C59. [DOI] [PubMed] [Google Scholar]
- Butler T. M., Siegman M. J., Mooers S. U., Narayan S. R. Myosin-product complex in the resting state and during relaxation of smooth muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):C1092–C1099. doi: 10.1152/ajpcell.1990.258.6.C1092. [DOI] [PubMed] [Google Scholar]
- Chilcote T. J., Johnson K. A. Phosphorylation of Tetrahymena 22 S dynein. J Biol Chem. 1990 Oct 5;265(28):17257–17266. [PubMed] [Google Scholar]
- Hamasaki T., Barkalow K., Richmond J., Satir P. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7918–7922. doi: 10.1073/pnas.88.18.7918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamasaki T., Murtaugh T. J., Satir B. H., Satir P. In vitro phosphorylation of Paramecium axonemes and permeabilized cells. Cell Motil Cytoskeleton. 1989;12(1):1–11. doi: 10.1002/cm.970120102. [DOI] [PubMed] [Google Scholar]
- Hayashi M., Takahashi M. Ciliary adenosinetriphosphatase from a slow swimming mutant of Paramecium caudatum. J Biol Chem. 1979 Nov 25;254(22):11561–11565. [PubMed] [Google Scholar]
- Hochstrasser M., Nelson D. L. Cyclic AMP-dependent protein kinase in Paramecium tetraurelia. Its purification and the production of monoclonal antibodies against both subunits. J Biol Chem. 1989 Aug 25;264(24):14510–14518. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Larsen J., Barkalow K., Hamasaki T., Satir P. Structural and functional characterization of paramecium dynein: initial studies. J Protozool. 1991 Jan-Feb;38(1):55–61. doi: 10.1111/j.1550-7408.1991.tb04801.x. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
- Murakami A. Control of ciliary beat frequency in the gill of Mytilus--I. Activation of the lateral cilia by cyclic AMP. Comp Biochem Physiol C. 1987;86(2):273–279. doi: 10.1016/0742-8413(87)90079-x. [DOI] [PubMed] [Google Scholar]
- Salathe M., Pratt M. M., Wanner A. Cyclic AMP-dependent phosphorylation of a 26 kD axonemal protein in ovine cilia isolated from small tissue pieces. Am J Respir Cell Mol Biol. 1993 Sep;9(3):306–314. doi: 10.1165/ajrcmb/9.3.306. [DOI] [PubMed] [Google Scholar]
- Sanderson M. J., Lansley A. B., Dirksen E. R. Regulation of ciliary beat frequency in respiratory tract cells. Chest. 1992 Mar;101(3 Suppl):69S–71S. doi: 10.1378/chest.101.3_supplement.69s. [DOI] [PubMed] [Google Scholar]
- Satir P., Barkalow K., Hamasaki T. The control of ciliary beat frequency. Trends Cell Biol. 1993 Nov;3(11):409–412. doi: 10.1016/0962-8924(93)90092-f. [DOI] [PubMed] [Google Scholar]
- Schultz J. E., Klumpp S., Benz R., Schürhoff-Goeters W. J., Schmid A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science. 1992 Jan 31;255(5044):600–603. doi: 10.1126/science.1371017. [DOI] [PubMed] [Google Scholar]
- Stephens R. E., Prior G. Dynein from serotonin-activated cilia and flagella: extraction characteristics and distinct sites for cAMP-dependent protein phosphorylation. J Cell Sci. 1992 Dec;103(Pt 4):999–1012. doi: 10.1242/jcs.103.4.999. [DOI] [PubMed] [Google Scholar]
- Stommel E. W., Stephens R. E. Cyclic AMP and calcium in the differential control of Mytilus gill cilia. J Comp Physiol A. 1985 Oct;157(4):451–459. doi: 10.1007/BF00615145. [DOI] [PubMed] [Google Scholar]
- Toyoshima Y. Y. Chymotryptic digestion of Tetrahymena 22S dynein. I. Decomposition of three-headed 22S dynein to one- and two-headed particles. J Cell Biol. 1987 Aug;105(2):887–895. doi: 10.1083/jcb.105.2.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoshima Y. Y. Chymotryptic digestion of Tetrahymena ciliary dynein. II. Pathway of the degradation of 22S dynein heavy chains. J Cell Biol. 1987 Aug;105(2):897–901. doi: 10.1083/jcb.105.2.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travis S. M., Nelson D. L. Purification and properties of dyneins from Paramecium cilia. Biochim Biophys Acta. 1988 Jul 14;966(1):73–83. doi: 10.1016/0304-4165(88)90130-4. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Malik F., Brown D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol. 1992 Dec;119(6):1589–1596. doi: 10.1083/jcb.119.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Toyoshima Y. Y. Microtubule translocation properties of intact and proteolytically digested dyneins from Tetrahymena cilia. J Cell Biol. 1989 Jun;108(6):2327–2334. doi: 10.1083/jcb.108.6.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Toyoshima Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell. 1988 Feb 12;52(3):459–469. doi: 10.1016/s0092-8674(88)80038-2. [DOI] [PubMed] [Google Scholar]
- Walczak C. E., Marchese-Ragona S. P., Nelson D. L. Immunological comparison of 22S, 19S, and 12S dyneins from Paramecium cilia. Cell Motil Cytoskeleton. 1993;24(1):17–28. doi: 10.1002/cm.970240103. [DOI] [PubMed] [Google Scholar]
- Walczak C. E., Nelson D. L. Regulation of dynein-driven motility in cilia and flagella. Cell Motil Cytoskeleton. 1994;27(2):101–107. doi: 10.1002/cm.970270202. [DOI] [PubMed] [Google Scholar]