Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Sep 1;126(5):1319–1327. doi: 10.1083/jcb.126.5.1319

An old enzyme with a new function: purification and characterization of a distinct matrix-degrading metalloproteinase in rat kidney cortex and its identification as meprin

PMCID: PMC2120165  PMID: 8063866

Abstract

We have purified to homogeneity the enzyme in the kidney cortex which accounts for the vast majority of matrix-degrading activity at neutral pH. The purified enzyme has an apparent molecular mass of 350 kD by gel filtration and of 85 kD on SDS-PAGE under reducing conditions; and it degrades laminin, type IV collagen and fibronectin. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by other proteinase inhibitors. The enzyme was not activated by organomercurials or by trypsin and was not inhibited by tissue inhibitors of metalloproteinases indicating that it is distinct from the other matrix- degrading metalloproteinases. Unexpectedly, the amino acid sequence of the NH2-terminal and two internal peptides of the enzyme showed complete homology to those alpha subunits of rat meprin, an enzyme previously shown to degrade azocasein and insulin B chain but not known to degrade extracellular matrix components. Immunoprecipitation studies, Western blot analyses and other biochemical properties of the purified enzyme confirm that the distinct matrix-degrading enzyme is indeed meprin. Our data also demonstrate that meprin is the major enzyme in the renal cortex capable of degrading components of the extracellular matrix. The demonstration of this hitherto unknown function of meprin suggests its potential role in renal pathophysiology.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R., Leardkamolkarn V. Development of kidney tubular basement membranes. Kidney Int. 1991 Mar;39(3):382–393. doi: 10.1038/ki.1991.50. [DOI] [PubMed] [Google Scholar]
  2. Bond J. S., Beynon R. J. Meprin: a membrane-bound metallo-endopeptidase. Curr Top Cell Regul. 1986;28:263–290. doi: 10.1016/b978-0-12-152828-7.50009-3. [DOI] [PubMed] [Google Scholar]
  3. Chin J. R., Murphy G., Werb Z. Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem. 1985 Oct 5;260(22):12367–12376. [PubMed] [Google Scholar]
  4. Corbeil D., Gaudoux F., Wainwright S., Ingram J., Kenny A. J., Boileau G., Crine P. Molecular cloning of the alpha-subunit of rat endopeptidase-24.18 (endopeptidase-2) and co-localization with endopeptidase-24.11 in rat kidney by in situ hybridization. FEBS Lett. 1992 Sep 7;309(2):203–208. doi: 10.1016/0014-5793(92)81095-4. [DOI] [PubMed] [Google Scholar]
  5. Craig S. S., Reckelhoff J. F., Bond J. S. Distribution of meprin in kidneys from mice with high- and low-meprin activity. Am J Physiol. 1987 Oct;253(4 Pt 1):C535–C540. doi: 10.1152/ajpcell.1987.253.4.C535. [DOI] [PubMed] [Google Scholar]
  6. Engel J. Laminins and other strange proteins. Biochemistry. 1992 Nov 10;31(44):10643–10651. doi: 10.1021/bi00159a001. [DOI] [PubMed] [Google Scholar]
  7. Gorbea C. M., Flannery A. V., Bond J. S. Homo- and heterotetrameric forms of the membrane-bound metalloendopeptidases meprin A and B. Arch Biochem Biophys. 1991 Nov 1;290(2):549–553. doi: 10.1016/0003-9861(91)90580-c. [DOI] [PubMed] [Google Scholar]
  8. Johnson G. D., Hersh L. B. Cloning a rat meprin cDNA reveals the enzyme is a heterodimer. J Biol Chem. 1992 Jul 5;267(19):13505–13512. [PubMed] [Google Scholar]
  9. Kaushal G. P., Zeng Y., Elbein A. D. Biosynthesis of glucosidase II in suspension-cultured soybean cells. J Biol Chem. 1993 Jul 5;268(19):14536–14542. [PubMed] [Google Scholar]
  10. Kenny A. J., Ingram J. Proteins of the kidney microvillar membrane. Purification and properties of the phosphoramidon-insensitive endopeptidase ('endopeptidase-2') from rat kidney. Biochem J. 1987 Jul 15;245(2):515–524. doi: 10.1042/bj2450515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kounnas M. Z., Wolz R. L., Gorbea C. M., Bond J. S. Meprin-A and -B. Cell surface endopeptidases of the mouse kidney. J Biol Chem. 1991 Sep 15;266(26):17350–17357. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Le Q., Shah S., Nguyen H., Cortez S., Baricos W. A novel metalloproteinase present in freshly isolated rat glomeruli. Am J Physiol. 1991 Apr;260(4 Pt 2):F555–F561. doi: 10.1152/ajprenal.1991.260.4.F555. [DOI] [PubMed] [Google Scholar]
  14. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  15. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  16. Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
  17. Montelaro R. C., Rueckert R. R. Radiolabeling of proteins and viruses in vitro by acetylation with radioactive acetic anhydride. J Biol Chem. 1975 Feb 25;250(4):1413–1421. [PubMed] [Google Scholar]
  18. Morodomi T., Ogata Y., Sasaguri Y., Morimatsu M., Nagase H. Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem J. 1992 Jul 15;285(Pt 2):603–611. doi: 10.1042/bj2850603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okada Y., Nagase H., Harris E. D., Jr A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem. 1986 Oct 25;261(30):14245–14255. [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walker P. D. Alterations in renal tubular extracellular matrix components after ischemia-reperfusion injury to the kidney. Lab Invest. 1994 Mar;70(3):339–345. [PubMed] [Google Scholar]
  23. Walker P. D., Kaushal G. P., Shah S. V. Presence of a distinct extracellular matrix-degrading metalloproteinase activity in renal tubules. J Am Soc Nephrol. 1994 Jul;5(1):55–61. doi: 10.1681/ASN.V5155. [DOI] [PubMed] [Google Scholar]
  24. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES