Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Oct 1;127(1):55–69. doi: 10.1083/jcb.127.1.55

The alpha and beta subunits of the Na,K-ATPase can assemble at the plasma membrane into functional enzyme

PMCID: PMC2120187  PMID: 7929571

Abstract

Synthesis and assembly of most oligomeric plasma membrane proteins occurs in the ER. However, the role the ER plays in oligomerization is unknown. We have previously demonstrated that unassociated alpha and beta subunits of the Na,K-ATPase are targeted to the plasma membrane when individually expressed in baculovirus-infected Sf-9 cells. This unique property allows us to determine if assembly of these two polypeptides is restricted to the ER, or if it can also occur at the plasma membrane. To investigate the assembly of the Na,K-ATPase we have taken advantage of the ability of baculovirus-infected cells to fuse. Lowering the extracellular pH of the infected cells triggers an endogenously expressed viral protein to initiate plasma membrane fusion. When individual Sf-9 cells expressing either the Na,K-ATPase alpha or beta subunits are plated together and subjected to a mild acidic shock, they form large syncytia. In the newly continuous plasma membrane the separate alpha and beta polypeptides associate and assemble into functional Na,K-ATPase molecules. However, a hybrid ATPase molecule consisting of a Na,K-ATPase alpha subunit and a H,K- ATPase beta subunit, which efficiently assembles in the ER of coinfected cells, does not assemble at the plasma membrane of fused cells. When cells expressing the Na,K-ATPase alpha subunit are fused to cells coexpressing the Na,K-ATPase beta subunit and the H,K-ATPase beta subunit, the Na,K-ATPase alpha subunit selectively assembles with the Na,K-ATPase beta subunit. However, when cells are coinfected and expressing all three polypeptides, the Na,K-ATPase alpha subunit assembles with both beta subunits in the ER, in what appears to be a random fashion. These experiments demonstrate that assembly between some polypeptides is restricted to the ER, and suggests that the ability of the Na,K-ATPase alpha and beta subunits to leave the ER and assemble at the plasma membrane may represent a novel mechanism of regulation of activity.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann O., Walz B., Somlyo A. V., Somlyo A. P. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):741–744. doi: 10.1073/pnas.88.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnir B., Tierney M. L., Howitt S. M., Cox G. B., Gage P. W. A combination of human alpha 1 and beta 1 subunits is required for formation of detectable GABA-activated chloride channels in Sf9 cells. Proc Biol Sci. 1992 Dec 22;250(1329):307–312. doi: 10.1098/rspb.1992.0163. [DOI] [PubMed] [Google Scholar]
  3. Blissard G. W., Wenz J. R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol. 1992 Nov;66(11):6829–6835. doi: 10.1128/jvi.66.11.6829-6835.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blount P., Merlie J. P. BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. J Cell Biol. 1991 Jun;113(5):1125–1132. doi: 10.1083/jcb.113.5.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blount P., Smith M. M., Merlie J. P. Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 1):2601–2611. doi: 10.1083/jcb.111.6.2601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
  7. Colman A., Besley J., Valle G. Interactions of mouse immunoglobulin chains within Xenopus oocytes. J Mol Biol. 1982 Sep 25;160(3):459–474. doi: 10.1016/0022-2836(82)90308-4. [DOI] [PubMed] [Google Scholar]
  8. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Copeland C. S., Zimmer K. P., Wagner K. R., Healey G. A., Mellman I., Helenius A. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell. 1988 Apr 22;53(2):197–209. doi: 10.1016/0092-8674(88)90381-9. [DOI] [PubMed] [Google Scholar]
  10. Eakle K. A., Kim K. S., Kabalin M. A., Farley R. A. High-affinity ouabain binding by yeast cells expressing Na+, K(+)-ATPase alpha subunits and the gastric H+, K(+)-ATPase beta subunit. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2834–2838. doi: 10.1073/pnas.89.7.2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forsayeth J. R., Gu Y., Hall Z. W. BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. J Cell Biol. 1992 May;117(4):841–847. doi: 10.1083/jcb.117.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geering K. The functional role of the beta-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS Lett. 1991 Jul 22;285(2):189–193. doi: 10.1016/0014-5793(91)80801-9. [DOI] [PubMed] [Google Scholar]
  13. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  14. Gottardi C. J., Caplan M. J. An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol. 1993 Apr;121(2):283–293. doi: 10.1083/jcb.121.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green W. N., Claudio T. Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell. 1993 Jul 16;74(1):57–69. doi: 10.1016/0092-8674(93)90294-z. [DOI] [PubMed] [Google Scholar]
  16. Gu Y., Forsayeth J. R., Verrall S., Yu X. M., Hall Z. W. Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J Cell Biol. 1991 Aug;114(4):799–807. doi: 10.1083/jcb.114.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horisberger J. D., Jaunin P., Reuben M. A., Lasater L. S., Chow D. C., Forte J. G., Sachs G., Rossier B. C., Geering K. The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps. J Biol Chem. 1991 Oct 15;266(29):19131–19134. [PubMed] [Google Scholar]
  18. Hsu V. W., Yuan L. C., Nuchtern J. G., Lippincott-Schwartz J., Hammerling G. J., Klausner R. D. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature. 1991 Aug 1;352(6334):441–444. doi: 10.1038/352441a0. [DOI] [PubMed] [Google Scholar]
  19. Hundal H. S., Marette A., Mitsumoto Y., Ramlal T., Blostein R., Klip A. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem. 1992 Mar 15;267(8):5040–5043. [PubMed] [Google Scholar]
  20. Huovila A. P., Eder A. M., Fuller S. D. Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. J Cell Biol. 1992 Sep;118(6):1305–1320. doi: 10.1083/jcb.118.6.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  22. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  23. Klaassen C. H., Van Uem T. J., De Moel M. P., De Caluwé G. L., Swarts H. G., De Pont J. J. Functional expression of gastric H,K-ATPase using the baculovirus expression system. FEBS Lett. 1993 Aug 30;329(3):277–282. doi: 10.1016/0014-5793(93)80237-o. [DOI] [PubMed] [Google Scholar]
  24. Klausner R. D., Lippincott-Schwartz J., Bonifacino J. S. The T cell antigen receptor: insights into organelle biology. Annu Rev Cell Biol. 1990;6:403–431. doi: 10.1146/annurev.cb.06.110190.002155. [DOI] [PubMed] [Google Scholar]
  25. Lauraeus M., Wikström M. The terminal quinol oxidases of Bacillus subtilis have different energy conservation properties. J Biol Chem. 1993 May 25;268(15):11470–11473. [PubMed] [Google Scholar]
  26. Leikina E., Onaran H. O., Zimmerberg J. Acidic pH induces fusion of cells infected with baculovirus to form syncytia. FEBS Lett. 1992 Jun 15;304(2-3):221–224. doi: 10.1016/0014-5793(92)80623-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Machamer C. E., Doms R. W., Bole D. G., Helenius A., Rose J. K. Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J Biol Chem. 1990 Apr 25;265(12):6879–6883. [PubMed] [Google Scholar]
  28. Marxer A., Stieger B., Quaroni A., Kashgarian M., Hauri H. P. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit. J Cell Biol. 1989 Sep;109(3):1057–1069. doi: 10.1083/jcb.109.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mercer R. W. Structure of the Na,K-ATPase. Int Rev Cytol. 1993;137C:139–168. [PubMed] [Google Scholar]
  30. Mircheff A. K., Bowen J. W., Yiu S. C., McDonough A. A. Synthesis and translocation of Na(+)-K(+)-ATPase alpha- and beta-subunits to plasma membrane in MDCK cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C470–C483. doi: 10.1152/ajpcell.1992.262.2.C470. [DOI] [PubMed] [Google Scholar]
  31. Musil L. S., Goodenough D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993 Sep 24;74(6):1065–1077. doi: 10.1016/0092-8674(93)90728-9. [DOI] [PubMed] [Google Scholar]
  32. Ng D. T., Randall R. E., Lamb R. A. Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J Cell Biol. 1989 Dec;109(6 Pt 2):3273–3289. doi: 10.1083/jcb.109.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noguchi S., Mishina M., Kawamura M., Numa S. Expression of functional (Na+ + K+)-ATPase from cloned cDNAs. FEBS Lett. 1987 Dec 10;225(1-2):27–32. doi: 10.1016/0014-5793(87)81125-0. [DOI] [PubMed] [Google Scholar]
  34. Reuben M. A., Lasater L. S., Sachs G. Characterization of a beta subunit of the gastric H+/K(+)-transporting ATPase. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6767–6771. doi: 10.1073/pnas.87.17.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  36. Rothman J. E., Urbani L. J., Brands R. Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system. J Cell Biol. 1984 Jul;99(1 Pt 1):248–259. doi: 10.1083/jcb.99.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suzuki C. K., Bonifacino J. S., Lin A. Y., Davis M. M., Klausner R. D. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP. J Cell Biol. 1991 Jul;114(2):189–205. doi: 10.1083/jcb.114.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tamkun M. M., Fambrough D. M. The (Na+ + K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport. J Biol Chem. 1986 Jan 25;261(3):1009–1019. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES