Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Oct 1;127(1):117–128. doi: 10.1083/jcb.127.1.117

Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent

PMCID: PMC2120190  PMID: 7929557

Abstract

Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arena N., Bodo M., Baroni T., Alia F. A., Gaspa L., Becchetti E. Effects of lectins on cytoskeleton and morphology or cultured chick embryo fibroblasts. Cell Mol Biol. 1990;36(3):317–328. [PubMed] [Google Scholar]
  2. Bedlack R. S., Jr, Wei M., Loew L. M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron. 1992 Sep;9(3):393–403. doi: 10.1016/0896-6273(92)90178-g. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal R., Kempf C., Van Renswoude J., Weinstein J. N., Klausner R. D. Voltage-dependent orientation of membrane proteins. J Cell Biochem. 1983;22(1):55–67. doi: 10.1002/jcb.240220106. [DOI] [PubMed] [Google Scholar]
  4. Borgens R. B. What is the role of naturally produced electric current in vertebrate regeneration and healing. Int Rev Cytol. 1982;76:245–298. doi: 10.1016/s0074-7696(08)61793-3. [DOI] [PubMed] [Google Scholar]
  5. Brandley B. K., Schnaar R. L. Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide. Dev Biol. 1989 Sep;135(1):74–86. doi: 10.1016/0012-1606(89)90159-0. [DOI] [PubMed] [Google Scholar]
  6. Briesewitz R., Kern A., Marcantonio E. E. Ligand-dependent and -independent integrin focal contact localization: the role of the alpha chain cytoplasmic domain. Mol Biol Cell. 1993 Jun;4(6):593–604. doi: 10.1091/mbc.4.6.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brundage R. A., Fogarty K. E., Tuft R. A., Fay F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science. 1991 Nov 1;254(5032):703–706. doi: 10.1126/science.1948048. [DOI] [PubMed] [Google Scholar]
  8. Carter S. B. Haptotaxis and the mechanism of cell motility. Nature. 1967 Jan 21;213(5073):256–260. doi: 10.1038/213256a0. [DOI] [PubMed] [Google Scholar]
  9. Chen C. F., Corbley M. J., Roberts T. M., Hess P. Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science. 1988 Feb 26;239(4843):1024–1026. doi: 10.1126/science.2449730. [DOI] [PubMed] [Google Scholar]
  10. Cooper M. S., Schliwa M. Electrical and ionic controls of tissue cell locomotion in DC electric fields. J Neurosci Res. 1985;13(1-2):223–244. doi: 10.1002/jnr.490130116. [DOI] [PubMed] [Google Scholar]
  11. Cooper M. S., Schliwa M. Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol. 1986 Apr;102(4):1384–1399. doi: 10.1083/jcb.102.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diamond M. S., Springer T. A. The dynamic regulation of integrin adhesiveness. Curr Biol. 1994 Jun 1;4(6):506–517. doi: 10.1016/s0960-9822(00)00111-1. [DOI] [PubMed] [Google Scholar]
  13. Duband J. L., Nuckolls G. H., Ishihara A., Hasegawa T., Yamada K. M., Thiery J. P., Jacobson K. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J Cell Biol. 1988 Oct;107(4):1385–1396. doi: 10.1083/jcb.107.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gipson I. K., Anderson R. A. Effect of lectins on migration of the corneal epithelium. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):341–349. [PubMed] [Google Scholar]
  15. Giugni T. D., Braslau D. L., Haigler H. T. Electric field-induced redistribution and postfield relaxation of epidermal growth factor receptors on A431 cells. J Cell Biol. 1987 May;104(5):1291–1297. doi: 10.1083/jcb.104.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gross D., Loew L. M., Webb W. W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986 Aug;50(2):339–348. doi: 10.1016/S0006-3495(86)83467-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hahn K., DeBiasio R., Taylor D. L. Patterns of elevated free calcium and calmodulin activation in living cells. Nature. 1992 Oct 22;359(6397):736–738. doi: 10.1038/359736a0. [DOI] [PubMed] [Google Scholar]
  19. Harris A. K., Pryer N. K., Paydarfar D. Effects of electric fields on fibroblast contractility and cytoskeleton. J Exp Zool. 1990 Feb;253(2):163–176. doi: 10.1002/jez.1402530206. [DOI] [PubMed] [Google Scholar]
  20. Hynes R. O., Marcantonio E. E., Stepp M. A., Urry L. A., Yee G. H. Integrin heterodimer and receptor complexity in avian and mammalian cells. J Cell Biol. 1989 Jul;109(1):409–420. doi: 10.1083/jcb.109.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
  22. Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
  23. Klug M., Steinhardt R. A. Reduction in the calcium requirement for growth is correlated with intracellular calcium stores in normal and SV40-transformed NIH 3T3 cells. Cell Biol Int Rep. 1991 Oct;15(10):907–916. doi: 10.1016/0309-1651(91)90141-5. [DOI] [PubMed] [Google Scholar]
  24. Kucik D. F., Elson E. L., Sheetz M. P. Forward transport of glycoproteins on leading lamellipodia in locomoting cells. Nature. 1989 Jul 27;340(6231):315–317. doi: 10.1038/340315a0. [DOI] [PubMed] [Google Scholar]
  25. Kumagai K., Arai S. Inhibition of macrophage migration by concanavalin A. J Reticuloendothel Soc. 1973 Jun;13(6):507–510. [PubMed] [Google Scholar]
  26. Manger T. M., Koeppen B. M. Characterization of acid-base transporters in cultured outer medullary collecting duct cells. Am J Physiol. 1992 Dec;263(6 Pt 2):F996–1003. doi: 10.1152/ajprenal.1992.263.6.F996. [DOI] [PubMed] [Google Scholar]
  27. McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85–93. doi: 10.1016/S0006-3495(81)84838-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Minta A., Kao J. P., Tsien R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171–8178. [PubMed] [Google Scholar]
  29. Moran D. The action of concanavalin A on migrating and differentiating neural crest cells. Exp Cell Res. 1974 Jun;86(2):365–373. doi: 10.1016/0014-4827(74)90724-1. [DOI] [PubMed] [Google Scholar]
  30. Newcomb T. G., Mullins R. D., Sisken J. E. Altered calcium regulation in SV40-transformed Swiss 3T3 fibroblasts. Cell Calcium. 1993 Jul;14(7):539–549. doi: 10.1016/0143-4160(93)90075-h. [DOI] [PubMed] [Google Scholar]
  31. Nigg E. A., Sefton B. M., Singer S. J., Vogt P. K. Cytoskeletal organization, vinculin-phosphorylation, and fibronectin expression in transformed fibroblasts with different cell morphologies. Virology. 1986 May;151(1):50–65. doi: 10.1016/0042-6822(86)90103-0. [DOI] [PubMed] [Google Scholar]
  32. Nuccitelli R., Smart T., Ferguson J. Protein kinases are required for embryonic neural crest cell galvanotaxis. Cell Motil Cytoskeleton. 1993;24(1):54–66. doi: 10.1002/cm.970240107. [DOI] [PubMed] [Google Scholar]
  33. Onuma E. K., Hui S. W. A calcium requirement for electric field-induced cell shape changes and preferential orientation. Cell Calcium. 1985 Jun;6(3):281–292. doi: 10.1016/0143-4160(85)90012-0. [DOI] [PubMed] [Google Scholar]
  34. Onuma E. K., Hui S. W. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol. 1988 Jun;106(6):2067–2075. doi: 10.1083/jcb.106.6.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Patel N., Poo M. M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982 Apr;2(4):483–496. doi: 10.1523/JNEUROSCI.02-04-00483.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peres A., Sturani E., Zippel R. Voltage-dependent calcium current in adherent mouse 3T3 fibroblasts. Exp Cell Res. 1989 Feb;180(2):585–590. doi: 10.1016/0014-4827(89)90088-8. [DOI] [PubMed] [Google Scholar]
  37. Pollack R. E., Green H., Todaro G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc Natl Acad Sci U S A. 1968 May;60(1):126–133. doi: 10.1073/pnas.60.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):994–998. doi: 10.1073/pnas.72.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Polverino A. J., Hughes B. P., Barritt G. J. Inhibition of Ca2+ inflow causes an abrupt cessation of growth-factor-induced repetitive free Ca2+ transients in single NIH-3T3 cells. Biochem J. 1991 Sep 15;278(Pt 3):849–855. doi: 10.1042/bj2780849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
  41. Regen C. M., Horwitz A. F. Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol. 1992 Dec;119(5):1347–1359. doi: 10.1083/jcb.119.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sheetz M. P., Baumrind N. L., Wayne D. B., Pearlman A. L. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell. 1990 Apr 20;61(2):231–241. doi: 10.1016/0092-8674(90)90804-n. [DOI] [PubMed] [Google Scholar]
  43. Tank D. W., Fredericks W. J., Barak L. S., Webb W. W. Electric field-induced redistribution and postfield relaxation of low density lipoprotein receptors on cultured human fibroblasts. J Cell Biol. 1985 Jul;101(1):148–157. doi: 10.1083/jcb.101.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taylor D. L., Blinks J. R., Reynolds G. Contractile basis of ameboid movement. VII. Aequorin luminescence during ameboid movement, endocytosis, and capping. J Cell Biol. 1980 Aug;86(2):599–607. doi: 10.1083/jcb.86.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thuren T., Tulkki A. P., Virtanen J. A., Kinnunen P. K. Triggering of the activity of phospholipase A2 by an electric field. Biochemistry. 1987 Aug 11;26(16):4907–4910. doi: 10.1021/bi00390a002. [DOI] [PubMed] [Google Scholar]
  46. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  47. Willingham M. C., Yamada K. M., Yamada S. S., Pouysségur J., Pastan I. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell. 1977 Mar;10(3):375–380. doi: 10.1016/0092-8674(77)90024-1. [DOI] [PubMed] [Google Scholar]
  48. Wöll E., Waldegger S., Lang F., Maly K., Grunicke H. Mechanism of intracellular calcium oscillations in fibroblasts expressing the ras oncogene. Pflugers Arch. 1992 Feb;420(2):208–212. doi: 10.1007/BF00374992. [DOI] [PubMed] [Google Scholar]
  49. Zagyansky Y. A., Jard S. Does lectin-receptor complex formation produce zones of restricted mobility within the membrane? Nature. 1979 Aug 16;280(5723):591–593. doi: 10.1038/280591a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES