Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Nov 1;127(3):803–811. doi: 10.1083/jcb.127.3.803

The transmembrane signaling pathway involved in directed movements of Chlamydomonas flagellar membrane glycoproteins involves the dephosphorylation of a 60-kD phosphoprotein that binds to the major flagellar membrane glycoprotein

PMCID: PMC2120242  PMID: 7962061

Abstract

Cross-linking of Chlamydomonas reinhardtii flagellar membrane glycoproteins results in the directed movements of these glycoproteins within the plane of the flagellar membrane. Three carbohydrate-binding reagents (FMG-1 monoclonal antibody, FMG-3 monoclonal antibody, concanvalin A) that induce flagellar membrane glycoprotein crosslinking and redistribution also induce the specific dephosphorylation of a 60- kD (pI 4.8-5.0) flagellar phosphoprotein (pp60) that is phosphorylated in vivo on serine. Ethanol treatment of live cells induces a similar specific dephosphorylation of pp60. Affinity adsorption of flagellar 32P-labeled membrane-matrix extracts with the FMG-1 monoclonal antibody and concanavalin A demonstrates that pp60 binds to the 350-kD class of flagellar membrane glycoproteins recognized by the FMG-1 monoclonal antibody. In vitro, protein phosphatase 2B (calcineurin) removes 60% of the 32P from pp60; this correlates well with previous observations that directed flagellar glycoprotein movements are dependent on micromolar calcium in the medium and are inhibited by calcium channel blockers and calmodulin antagonists. The data reported here are consistent with the dephosphorylation of pp60 being a step in the signaling pathway that couples flagellar membrane glycoprotein cross-linking to the directed movements of flagellar membrane glycoproteins.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. M., Huang B., Piperno G., Luck D. J. Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants. J Cell Biol. 1981 Oct;91(1):69–76. doi: 10.1083/jcb.91.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloodgood R. A. Calcium-regulated phosphorylation of proteins in the membrane-matrix compartment of the Chlamydomonas flagellum. Exp Cell Res. 1992 Feb;198(2):228–236. doi: 10.1016/0014-4827(92)90375-i. [DOI] [PubMed] [Google Scholar]
  3. Bloodgood R. A., Salomonsky N. L. Calcium influx regulates antibody-induced glycoprotein movements within the Chlamydomonas flagellar membrane. J Cell Sci. 1990 May;96(Pt 1):27–33. doi: 10.1242/jcs.96.1.27. [DOI] [PubMed] [Google Scholar]
  4. Bloodgood R. A., Salomonsky N. L. Use of a novel Chlamydomonas mutant to demonstrate that flagellar glycoprotein movements are necessary for the expression of gliding motility. Cell Motil Cytoskeleton. 1989;13(1):1–8. doi: 10.1002/cm.970130102. [DOI] [PubMed] [Google Scholar]
  5. Bloodgood R. A., Woodward M. P., Salomonsky N. L. Redistribution and shedding of flagellar membrane glycoproteins visualized using an anti-carbohydrate monoclonal antibody and concanavalin A. J Cell Biol. 1986 May;102(5):1797–1812. doi: 10.1083/jcb.102.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloodgood R. A., Workman L. J. A flagellar surface glycoprotein mediating cell-substrate interaction in Chlamydomonas. Cell Motil. 1984;4(2):77–87. doi: 10.1002/cm.970040202. [DOI] [PubMed] [Google Scholar]
  7. Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
  8. Bray D., Hollenbeck P. J. Growth cone motility and guidance. Annu Rev Cell Biol. 1988;4:43–61. doi: 10.1146/annurev.cb.04.110188.000355. [DOI] [PubMed] [Google Scholar]
  9. Damsky C. H., Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol. 1992 Oct;4(5):772–781. doi: 10.1016/0955-0674(92)90100-q. [DOI] [PubMed] [Google Scholar]
  10. Eistetter H., Seckler B., Bryniok D., Schultz J. E. Phosphorylation of endogenous proteins of cilia from Paramecium tetraurelia in vitro. Eur J Cell Biol. 1983 Sep;31(2):220–226. [PubMed] [Google Scholar]
  11. Gabev E., Kasianowicz J., Abbott T., McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta. 1989 Feb 13;979(1):105–112. doi: 10.1016/0005-2736(89)90529-4. [DOI] [PubMed] [Google Scholar]
  12. Hasegawa E., Hayashi H., Asakura S., Kamiya R. Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of cAMP-dependent phosphorylation. Cell Motil Cytoskeleton. 1987;8(4):302–311. doi: 10.1002/cm.970080403. [DOI] [PubMed] [Google Scholar]
  13. Hemmings H. C., Jr, Nairn A. C., Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem. 1984 Dec 10;259(23):14491–14497. [PubMed] [Google Scholar]
  14. Hoek J. B., Thomas A. P., Rubin R., Rubin E. Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes. J Biol Chem. 1987 Jan 15;262(2):682–691. [PubMed] [Google Scholar]
  15. Homan W., Musgrave A., de Nobel H., Wagter R., de Wit D., Kolk A., van den Ende H. Monoclonal antibodies directed against the sexual binding site of Chlamydomonas eugametos gametes. J Cell Biol. 1988 Jul;107(1):177–189. doi: 10.1083/jcb.107.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang B., Piperno G., Ramanis Z., Luck D. J. Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function. J Cell Biol. 1981 Jan;88(1):80–88. doi: 10.1083/jcb.88.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  18. Jarvik J. W., Rosenbaum J. L. Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii. J Cell Biol. 1980 May;85(2):258–272. doi: 10.1083/jcb.85.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klee C. B., Draetta G. F., Hubbard M. J. Calcineurin. Adv Enzymol Relat Areas Mol Biol. 1988;61:149–200. doi: 10.1002/9780470123072.ch4. [DOI] [PubMed] [Google Scholar]
  21. Klee C. B., Krinks M. H., Manalan A. S., Cohen P., Stewart A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. Methods Enzymol. 1983;102:227–244. doi: 10.1016/s0076-6879(83)02024-8. [DOI] [PubMed] [Google Scholar]
  22. Klumpp S., Schultz J. E. Identification of a 42 kDa protein as a substrate of protein phosphatase 1 in cilia from Paramecium. FEBS Lett. 1991 Aug 19;288(1-2):60–64. doi: 10.1016/0014-5793(91)81003-q. [DOI] [PubMed] [Google Scholar]
  23. Kooijman R., de Wildt P., Beumer S., van der Vliet G., Homan W., Kalshoven H., Musgrave A., van den Ende H. Wheat germ agglutinin induces mating reactions in Chlamydomonas eugametos by cross-linking agglutinin-associated glycoproteins in the flagellar membrane. J Cell Biol. 1989 Oct;109(4 Pt 1):1677–1687. doi: 10.1083/jcb.109.4.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lewin R. A., Lee T. H., Fang L. S. Effects of various agents on flagellar activity, flagellar autotomy and cell viability in four species of Chlamydomonas (chlorophyta: volvocales). Symp Soc Exp Biol. 1982;35:421–437. [PubMed] [Google Scholar]
  26. Lewis R. M., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes. J Cell Biol. 1981 Oct;91(1):167–174. doi: 10.1083/jcb.91.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  28. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  29. Piperno G., Luck D. J. Phosphorylation of axonemal proteins in Chlamydomonas reinhardtii. J Biol Chem. 1976 Apr 10;251(7):2161–2167. [PubMed] [Google Scholar]
  30. Quarmby L. M., Yueh Y. G., Cheshire J. L., Keller L. R., Snell W. J., Crain R. C. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1992 Feb;116(3):737–744. doi: 10.1083/jcb.116.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  32. Salathe M., Pratt M. M., Wanner A. Protein kinase C-dependent phosphorylation of a ciliary membrane protein and inhibition of ciliary beating. J Cell Sci. 1993 Dec;106(Pt 4):1211–1220. doi: 10.1242/jcs.106.4.1211. [DOI] [PubMed] [Google Scholar]
  33. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  34. Schwartz M. A. Transmembrane signalling by integrins. Trends Cell Biol. 1992 Oct;2(10):304–308. doi: 10.1016/0962-8924(92)90120-c. [DOI] [PubMed] [Google Scholar]
  35. Segal R. A., Luck D. J. Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response. J Cell Biol. 1985 Nov;101(5 Pt 1):1702–1712. doi: 10.1083/jcb.101.5.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
  37. Stossel T. P. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989 Nov 5;264(31):18261–18264. [PubMed] [Google Scholar]
  38. Tash J. S. Protein phosphorylation: the second messenger signal transducer of flagellar motility. Cell Motil Cytoskeleton. 1989;14(3):332–339. doi: 10.1002/cm.970140303. [DOI] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williams M. J., Hughes P. E., O'Toole T. E., Ginsberg M. H. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 1994 Apr;4(4):109–112. doi: 10.1016/0962-8924(94)90059-0. [DOI] [PubMed] [Google Scholar]
  41. Witman G. B., Carlson K., Rosenbaum J. L. Chlamydomonas flagella. II. The distribution of tubulins 1 and 2 in the outer doublet microtubules. J Cell Biol. 1972 Sep;54(3):540–555. doi: 10.1083/jcb.54.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Witman G. B. Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 1986;134:280–290. doi: 10.1016/0076-6879(86)34096-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES