Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Dec 2;127(6):1985–1993. doi: 10.1083/jcb.127.6.1985

Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span

PMCID: PMC2120297  PMID: 7806576

Abstract

The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angello J. C., Pendergrass W. R., Norwood T. H., Prothero J. Cell enlargement: one possible mechanism underlying cellular senescence. J Cell Physiol. 1989 Aug;140(2):288–294. doi: 10.1002/jcp.1041400214. [DOI] [PubMed] [Google Scholar]
  2. BARTHOLOMEW J. W., MITTWER T. Demonstration of yeast bud scars with the electron microscope. J Bacteriol. 1953 Mar;65(3):272–275. doi: 10.1128/jb.65.3.272-275.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Company M., Adler C., Errede B. Identification of a Ty1 regulatory sequence responsive to STE7 and STE12. Mol Cell Biol. 1988 Jun;8(6):2545–2554. doi: 10.1128/mcb.8.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egilmez N. K., Chen J. B., Jazwinski S. M. Specific alterations in transcript prevalence during the yeast life span. J Biol Chem. 1989 Aug 25;264(24):14312–14317. [PubMed] [Google Scholar]
  5. Egilmez N. K., Jazwinski S. M. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol. 1989 Jan;171(1):37–42. doi: 10.1128/jb.171.1.37-42.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farkas V. Biosynthesis of cell walls of fungi. Microbiol Rev. 1979 Jun;43(2):117–144. doi: 10.1128/mr.43.2.117-144.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartwell L. H., Unger M. W. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol. 1977 Nov;75(2 Pt 1):422–435. doi: 10.1083/jcb.75.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herskowitz I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Dec;52(4):536–553. doi: 10.1128/mr.52.4.536-553.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson B. F., Gibson E. J. Autoradiographic analysis of regional cell wall growth of yeasts. III. Saccharomyces cerevisiae. Exp Cell Res. 1966 Mar;41(3):580–591. doi: 10.1016/s0014-4827(66)80108-8. [DOI] [PubMed] [Google Scholar]
  10. Johnston J. R. Reproductive capacity and mode of death of yeast cells. Antonie Van Leeuwenhoek. 1966;32(1):94–98. doi: 10.1007/BF02097448. [DOI] [PubMed] [Google Scholar]
  11. Liu H., Styles C. A., Fink G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. doi: 10.1126/science.8259520. [DOI] [PubMed] [Google Scholar]
  12. Lumpkin C. K., Jr, McClung J. K., Pereira-Smith O. M., Smith J. R. Existence of high abundance antiproliferative mRNA's in senescent human diploid fibroblasts. Science. 1986 Apr 18;232(4748):393–395. doi: 10.1126/science.2421407. [DOI] [PubMed] [Google Scholar]
  13. MORTIMER R. K., JOHNSTON J. R. Life span of individual yeast cells. Nature. 1959 Jun 20;183(4677):1751–1752. doi: 10.1038/1831751a0. [DOI] [PubMed] [Google Scholar]
  14. Nasmyth K., Adolf G., Lydall D., Seddon A. The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SW15 nuclear entry. Cell. 1990 Aug 24;62(4):631–647. doi: 10.1016/0092-8674(90)90110-z. [DOI] [PubMed] [Google Scholar]
  15. Nasmyth K. Molecular analysis of a cell lineage. Nature. 1983 Apr 21;302(5910):670–676. doi: 10.1038/302670a0. [DOI] [PubMed] [Google Scholar]
  16. Neff M. W., Burke D. J. Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics. 1991 Mar;127(3):463–473. doi: 10.1093/genetics/127.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Norwood T. H., Pendergrass W. R., Sprague C. A., Martin G. M. Dominance of the senescent phenotype in heterokaryons between replicative and post-replicative human fibroblast-like cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2231–2235. doi: 10.1073/pnas.71.6.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pohley H. J. A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech Ageing Dev. 1987 May;38(3):231–243. doi: 10.1016/0047-6374(87)90092-3. [DOI] [PubMed] [Google Scholar]
  19. Schiestl R. H., Reynolds P., Prakash S., Prakash L. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol. 1989 May;9(5):1882–1896. doi: 10.1128/mcb.9.5.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sherwood S. W., Rush D., Ellsworth J. L., Schimke R. T. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9086–9090. doi: 10.1073/pnas.85.23.9086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weinert T. A., Hartwell L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. doi: 10.1126/science.3291120. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES