Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Dec 2;127(6):2071–2080. doi: 10.1083/jcb.127.6.2071

The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction

PMCID: PMC2120301  PMID: 7528749

Abstract

TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes. However, despite high cell surface levels of alpha 6 beta 4, TA3/Ha cells do not adhere to the alpha 6 beta 4 ligands laminin and kalinin. Here we show that this is due to the mucin epiglycanin that is highly expressed on TA3/Ha cells. Some monoclonal antibodies generated against epiglycanin induced capping of most of the epiglycanin molecules. TA3/Ha cells treated with these mAb did adhere to laminin and kalinin, and an epithelial monolayer was formed on kalinin, with alpha 6 beta 4 localized in HD1-containing hemidesmosome- like structures and E-cadherin at the cell-cell contact sites. Similar results were obtained after treatment of TA3/Ha cells with O- sialoglycoprotein endopeptidase which removes all epiglycanin. In addition, the enzyme induced E-cadherin-mediated cell-cell aggregation. Both treatments also enhanced the adhesion to hepatocytes, but given the potent antiadhesive effect of epiglycanin it is remarkable that nontreated TA3/Ha cells adhere to hepatocytes at all. We found that during this interaction, epiglycanin was redistributed. We conclude that epiglycanin can completely prevent both intercellular and matrix adhesion, but that this effect can be overcome in certain intercellular interactions because of the induced redistribution of the mucin.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker J. W., Erickson H. P., Hoffman S., Cunningham B. A., Edelman G. M. Topology of cell adhesion molecules. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1088–1092. doi: 10.1073/pnas.86.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bharathan S., Moriarty J., Moody C. E., Sherblom A. P. Effect of tunicamycin on sialomucin and natural killer susceptibility of rat mammary tumor ascites cells. Cancer Res. 1990 Sep 1;50(17):5250–5256. [PubMed] [Google Scholar]
  3. Bright S. W., Chen T. Y., Flebbe L. M., Lei M. G., Morrison D. C. Generation and characterization of hamster-mouse hybridomas secreting monoclonal antibodies with specificity for lipopolysaccharide receptor. J Immunol. 1990 Jul 1;145(1):1–7. [PubMed] [Google Scholar]
  4. Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  5. Carter W. G., Kaur P., Gil S. G., Gahr P. J., Wayner E. A. Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J Cell Biol. 1990 Dec;111(6 Pt 2):3141–3154. doi: 10.1083/jcb.111.6.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Codington J. F., Cooper A. G., Brown M. C., Jeanloz R. W. Evidence that the major cell suface glycoprotein of the TA3-Ha carcinoma contains the Vicia graminea receptor sites. Biochemistry. 1975 Feb 25;14(4):855–859. doi: 10.1021/bi00675a033. [DOI] [PubMed] [Google Scholar]
  7. Codington J. F., Cooper A. G., Miller D. K., Slayter H. S., Brown M. C., Silber C., Jeanloz R. W. Isolation and partial characterization of an epiglycanin-like glycoprotein from a new non-strain-specific subline of TA3 murine mammary adenocarcinoma. J Natl Cancer Inst. 1979 Jul;63(1):153–161. [PubMed] [Google Scholar]
  8. Codington J. F., Deak M. R., Frim D. M., Jeanloz R. W. Evidence for the presence of an N-acetyllactosamine-type chain in epiglycanin. Arch Biochem Biophys. 1986 Nov 15;251(1):47–54. doi: 10.1016/0003-9861(86)90049-4. [DOI] [PubMed] [Google Scholar]
  9. Codington J. F., Haavik S. Epiglycanin--a carcinoma-specific mucin-type glycoprotein of the mouse TA3 tumour. Glycobiology. 1992 Jun;2(3):173–180. doi: 10.1093/glycob/2.3.173. [DOI] [PubMed] [Google Scholar]
  10. Codington J. F., Klein G., Cooper A. G., Lee N., Brown M. C., Jeanloz R. W. Further studies on the relationship between large glycoprotein molecules and allotransplantability in the TA3 tumor of the mouse: studies on segregating TA3-HA hybrids. J Natl Cancer Inst. 1978 Apr;60(4):811–818. doi: 10.1093/jnci/60.4.811. [DOI] [PubMed] [Google Scholar]
  11. Devine P. L., McKenzie I. F. Mucins: structure, function, and associations with malignancy. Bioessays. 1992 Sep;14(9):619–625. doi: 10.1002/bies.950140909. [DOI] [PubMed] [Google Scholar]
  12. Dingemans K. P., Mooi W. J. Invasion of lung tissue by bronchogenic squamous-cell carcinomas: interaction of tumor cells and lung parenchyma in the tumor periphery. Int J Cancer. 1986 Jan 15;37(1):11–19. doi: 10.1002/ijc.2910370104. [DOI] [PubMed] [Google Scholar]
  13. Edelman G. M., Crossin K. L. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103. [DOI] [PubMed] [Google Scholar]
  14. Hauschka T. S., Weiss L., Holdridge B. A., Cudney T. L., Zumpft M., Planinsek J. A. Karyotypic and surface features of murine TA3 carcinoma cells during immunoselection in mice and rats. J Natl Cancer Inst. 1971 Aug;47(2):343–359. [PubMed] [Google Scholar]
  15. Hemler M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400. doi: 10.1146/annurev.iy.08.040190.002053. [DOI] [PubMed] [Google Scholar]
  16. Hieda Y., Nishizawa Y., Uematsu J., Owaribe K. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J Cell Biol. 1992 Mar;116(6):1497–1506. doi: 10.1083/jcb.116.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hilkens J., Buijs F., Hilgers J., Hageman P., Calafat J., Sonnenberg A., van der Valk M. Monoclonal antibodies against human milk-fat globule membranes detecting differentiation antigens of the mammary gland and its tumors. Int J Cancer. 1984 Aug 15;34(2):197–206. doi: 10.1002/ijc.2910340210. [DOI] [PubMed] [Google Scholar]
  18. Hilkens J., Ligtenberg M. J., Vos H. L., Litvinov S. V. Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci. 1992 Sep;17(9):359–363. doi: 10.1016/0968-0004(92)90315-z. [DOI] [PubMed] [Google Scholar]
  19. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  21. Hynes R. O., Lander A. D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell. 1992 Jan 24;68(2):303–322. doi: 10.1016/0092-8674(92)90472-o. [DOI] [PubMed] [Google Scholar]
  22. Kemperman H., Wijnands Y., Meijne A. M., Roos E. TA3/St, but not TA3/Ha, mammary carcinoma cell adhesion to hepatocytes is mediated by alpha 5 beta 1 interacting with surface-associated fibronectin. Cell Adhes Commun. 1994 Apr;2(1):45–58. doi: 10.3109/15419069409014201. [DOI] [PubMed] [Google Scholar]
  23. Kemperman H., Wijnands Y., de Rijk D., Roos E. The integrin alpha 6 beta 4 on TA3/Ha mammary carcinoma cells is involved in adhesion to hepatocytes. Cancer Res. 1993 Aug 1;53(15):3611–3617. [PubMed] [Google Scholar]
  24. Lee E. C., Lotz M. M., Steele G. D., Jr, Mercurio A. M. The integrin alpha 6 beta 4 is a laminin receptor. J Cell Biol. 1992 May;117(3):671–678. doi: 10.1083/jcb.117.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ligtenberg M. J., Buijs F., Vos H. L., Hilkens J. Suppression of cellular aggregation by high levels of episialin. Cancer Res. 1992 Apr 15;52(8):2318–2324. [PubMed] [Google Scholar]
  26. Manjunath N., Johnson R. S., Staunton D. E., Pasqualini R., Ardman B. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J Immunol. 1993 Aug 1;151(3):1528–1534. [PubMed] [Google Scholar]
  27. Middelkoop O. P., van Bavel P., Calafat J., Roos E. Hepatocyte surface molecule involved in the adhesion of TA3 mammary carcinoma cells to rat hepatocyte cultures. Cancer Res. 1985 Aug;45(8):3825–3835. [PubMed] [Google Scholar]
  28. Miller S. C., Codington J. F., Klein G. Further studies on the relationship between allotransplantability and the presence of the cell surface glycoprotein epiglycanin in the TA3-MM mouse mammary carcinoma ascites cell. J Natl Cancer Inst. 1982 Jun;68(6):981–988. [PubMed] [Google Scholar]
  29. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moriarty J., Skelly C. M., Bharathan S., Moody C. E., Sherblom A. P. Sialomucin and lytic susceptibility of rat mammary tumor ascites cells. Cancer Res. 1990 Nov 1;50(21):6800–6805. [PubMed] [Google Scholar]
  31. Niessen C. M., Hogervorst F., Jaspars L. H., de Melker A. A., Delwel G. O., Hulsman E. H., Kuikman I., Sonnenberg A. The alpha 6 beta 4 integrin is a receptor for both laminin and kalinin. Exp Cell Res. 1994 Apr;211(2):360–367. doi: 10.1006/excr.1994.1099. [DOI] [PubMed] [Google Scholar]
  32. Owaribe K., Kartenbeck J., Stumpp S., Magin T. M., Krieg T., Diaz L. A., Franke W. W. The hemidesmosomal plaque. I. Characterization of a major constituent protein as a differentiation marker for certain forms of epithelia. Differentiation. 1990 Dec;45(3):207–220. doi: 10.1111/j.1432-0436.1990.tb00475.x. [DOI] [PubMed] [Google Scholar]
  33. Riddelle K. S., Green K. J., Jones J. C. Formation of hemidesmosomes in vitro by a transformed rat bladder cell line. J Cell Biol. 1991 Jan;112(1):159–168. doi: 10.1083/jcb.112.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roos E. Adhesion molecules in lymphoma metastasis. Cancer Metastasis Rev. 1991 May;10(1):33–48. doi: 10.1007/BF00046842. [DOI] [PubMed] [Google Scholar]
  35. Roos E., Dingemans K. P., Van de Pavert I. V., Van den Bergh-Weerman M. A. Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells. Br J Cancer. 1978 Jul;38(1):88–99. doi: 10.1038/bjc.1978.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roos E., Van de Pavert I. V. Effect of tubulin-binding agents on the infiltration of tumour cells into primary hepatocyte cultures. J Cell Sci. 1982 Jun;55:233–245. doi: 10.1242/jcs.55.1.233. [DOI] [PubMed] [Google Scholar]
  37. Rutishauser U., Acheson A., Hall A. K., Mann D. M., Sunshine J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988 Apr 1;240(4848):53–57. doi: 10.1126/science.3281256. [DOI] [PubMed] [Google Scholar]
  38. Shaw D. R., Griffin F. M., Jr Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion. Nature. 1981 Jan 29;289(5796):409–411. doi: 10.1038/289409a0. [DOI] [PubMed] [Google Scholar]
  39. Sherblom A. P., Moody C. E. Cell surface sialomucin and resistance to natural cell-mediated cytotoxicity of rat mammary tumor ascites cells. Cancer Res. 1986 Sep;46(9):4543–4546. [PubMed] [Google Scholar]
  40. Sonnenberg A., Modderman P. W., Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988 Dec 1;336(6198):487–489. doi: 10.1038/336487a0. [DOI] [PubMed] [Google Scholar]
  41. Sonnenberg A., de Melker A. A., Martinez de Velasco A. M., Janssen H., Calafat J., Niessen C. M. Formation of hemidesmosomes in cells of a transformed murine mammary tumor cell line and mechanisms involved in adherence of these cells to laminin and kalinin. J Cell Sci. 1993 Dec;106(Pt 4):1083–1102. doi: 10.1242/jcs.106.4.1083. [DOI] [PubMed] [Google Scholar]
  42. Spicer A. P., Parry G., Patton S., Gendler S. J. Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem. 1991 Aug 15;266(23):15099–15109. [PubMed] [Google Scholar]
  43. Sutherland D. R., Abdullah K. M., Cyopick P., Mellors A. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J Immunol. 1992 Mar 1;148(5):1458–1464. [PubMed] [Google Scholar]
  44. Vestweber D., Kemler R. Some structural and functional aspects of the cell adhesion molecule uvomorulin. Cell Differ. 1984 Dec;15(2-4):269–273. doi: 10.1016/0045-6039(84)90084-8. [DOI] [PubMed] [Google Scholar]
  45. Vleminckx K. L., Deman J. J., Bruyneel E. A., Vandenbossche G. M., Keirsebilck A. A., Mareel M. M., van Roy F. M. Enlarged cell-associated proteoglycans abolish E-cadherin functionality in invasive tumor cells. Cancer Res. 1994 Feb 15;54(4):873–877. [PubMed] [Google Scholar]
  46. Vos H. L., de Vries Y., Hilkens J. The mouse episialin (Muc1) gene and its promoter: rapid evolution of the repetitive domain in the protein. Biochem Biophys Res Commun. 1991 Nov 27;181(1):121–130. doi: 10.1016/s0006-291x(05)81390-7. [DOI] [PubMed] [Google Scholar]
  47. Zaretsky J. Z., Weiss M., Tsarfaty I., Hareuveni M., Wreschner D. H., Keydar I. Expression of genes coding for pS2, c-erbB2, estrogen receptor and the H23 breast tumor-associated antigen. A comparative analysis in breast cancer. FEBS Lett. 1990 Jun 4;265(1-2):46–50. doi: 10.1016/0014-5793(90)80880-r. [DOI] [PubMed] [Google Scholar]
  48. van de Wiel-van Kemenade E., Ligtenberg M. J., de Boer A. J., Buijs F., Vos H. L., Melief C. J., Hilkens J., Figdor C. G. Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. J Immunol. 1993 Jul 15;151(2):767–776. [PubMed] [Google Scholar]
  49. van den Eijnden D. H., Blanken W. M., van Vliet A. Branch specificity of beta-D-galactosidase from Escherichia coli. Carbohydr Res. 1986 Aug 15;151:329–335. doi: 10.1016/s0008-6215(00)90352-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES