Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jan 1;128(1):139–155. doi: 10.1083/jcb.128.1.139

The role of microtubule dynamics in growth cone motility and axonal growth

PMCID: PMC2120332  PMID: 7822411

Abstract

The growth cone contains dynamic and relatively stable microtubule populations, whose function in motility and axonal growth is uncharacterized. We have used vinblastine at low doses to inhibit microtubule dynamics without appreciable depolymerization to probe the role of these dynamics in growth cone behavior. At doses of vinblastine that interfere only with dynamics, the forward and persistent movement of the growth cone is inhibited and the growth cone wanders without appreciable forward translocation; it quickly resumes forward growth after the vinblastine is washed out. Direct visualization of fluorescently tagged microtubules in these neurons shows that in the absence of dynamic microtubules, the remaining mass of polymer does not invade the peripheral lamella and does not undergo the usual cycle of bundling and splaying and the growth cone stops forward movement. These experiments argue for a role for dynamic microtubules in allowing microtubule rearrangements in the growth cone. These rearrangements seem to be necessary for microtubule bundling, the subsequent coalescence of the cortex around the bundle to form new axon, and forward translocation of the growth cone.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn N. G., Robbins D. J., Haycock J. W., Seger R., Cobb M. H., Krebs E. G. Identification of an activator of the microtubule-associated protein 2 kinases ERK1 and ERK2 in PC12 cells stimulated with nerve growth factor or bradykinin. J Neurochem. 1992 Jul;59(1):147–156. doi: 10.1111/j.1471-4159.1992.tb08885.x. [DOI] [PubMed] [Google Scholar]
  2. Aletta J. M., Greene L. A. Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci. 1988 Apr;8(4):1425–1435. doi: 10.1523/JNEUROSCI.08-04-01425.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baas P. W., Ahmad F. J. The transport properties of axonal microtubules establish their polarity orientation. J Cell Biol. 1993 Mar;120(6):1427–1437. doi: 10.1083/jcb.120.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamburg J. R., Bray D., Chapman K. Assembly of microtubules at the tip of growing axons. Nature. 1986 Jun 19;321(6072):788–790. doi: 10.1038/321788a0. [DOI] [PubMed] [Google Scholar]
  5. Bershadsky A. D., Vaisberg E. A., Vasiliev J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil Cytoskeleton. 1991;19(3):152–158. doi: 10.1002/cm.970190303. [DOI] [PubMed] [Google Scholar]
  6. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  7. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridgman P. C., Dailey M. E. The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol. 1989 Jan;108(1):95–109. doi: 10.1083/jcb.108.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buxbaum R. E., Heidemann S. R. A thermodynamic model for force integration and microtubule assembly during axonal elongation. J Theor Biol. 1988 Oct 7;134(3):379–390. doi: 10.1016/s0022-5193(88)80068-7. [DOI] [PubMed] [Google Scholar]
  11. Buxbaum R. E., Heidemann S. R. An absolute rate theory model for tension control of axonal elongation. J Theor Biol. 1992 Apr 21;155(4):409–426. doi: 10.1016/s0022-5193(05)80626-5. [DOI] [PubMed] [Google Scholar]
  12. Cleveland D. W., Hoffman P. N. Slow axonal transport models come full circle: evidence that microtubule sliding mediates axon elongation and tubulin transport. Cell. 1991 Nov 1;67(3):453–456. doi: 10.1016/0092-8674(91)90518-4. [DOI] [PubMed] [Google Scholar]
  13. Cyr J. L., Brady S. T. Molecular motors in axonal transport. Cellular and molecular biology of kinesin. Mol Neurobiol. 1992 Summer-Fall;6(2-3):137–155. doi: 10.1007/BF02780549. [DOI] [PubMed] [Google Scholar]
  14. Daniels M. P. Colchicine inhibition of nerve fiber formation in vitro. J Cell Biol. 1972 Apr;53(1):164–176. doi: 10.1083/jcb.53.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Daniels M. P. Fine structural changes in neurons and nerve fibers associated with colchicine inhibition of nerve fiber formation in vitro. J Cell Biol. 1973 Aug;58(2):463–470. doi: 10.1083/jcb.58.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dodd J., Jessell T. M. Axon guidance and the patterning of neuronal projections in vertebrates. Science. 1988 Nov 4;242(4879):692–699. doi: 10.1126/science.3055291. [DOI] [PubMed] [Google Scholar]
  17. Drechsel D. N., Hyman A. A., Cobb M. H., Kirschner M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell. 1992 Oct;3(10):1141–1154. doi: 10.1091/mbc.3.10.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldberg D. J., Burmeister D. W. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol. 1986 Nov;103(5):1921–1931. doi: 10.1083/jcb.103.5.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gordon-Weeks P. R. Evidence for microtubule capture by filopodial actin filaments in growth cones. Neuroreport. 1991 Oct;2(10):573–576. doi: 10.1097/00001756-199110000-00005. [DOI] [PubMed] [Google Scholar]
  21. Harris W. A., Holt C. E., Bonhoeffer F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development. 1987 Sep;101(1):123–133. doi: 10.1242/dev.101.1.123. [DOI] [PubMed] [Google Scholar]
  22. Jordan M. A., Thrower D., Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 1991 Apr 15;51(8):2212–2222. [PubMed] [Google Scholar]
  23. Jordan M. A., Wilson L. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations. Biochemistry. 1990 Mar 20;29(11):2730–2739. doi: 10.1021/bi00463a016. [DOI] [PubMed] [Google Scholar]
  24. Keynes R. J., Cook G. M. Repellent cues in axon guidance. Curr Opin Neurobiol. 1992 Feb;2(1):55–59. doi: 10.1016/0959-4388(92)90162-e. [DOI] [PubMed] [Google Scholar]
  25. Letourneau P. C. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell--substratum adhesions. Dev Biol. 1981 Jul 15;85(1):113–122. doi: 10.1016/0012-1606(81)90240-2. [DOI] [PubMed] [Google Scholar]
  26. Letourneau P. C., Ressler A. H. Inhibition of neurite initiation and growth by taxol. J Cell Biol. 1984 Apr;98(4):1355–1362. doi: 10.1083/jcb.98.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liesi P. Extracellular matrix and neuronal movement. Experientia. 1990 Sep 15;46(9):900–907. doi: 10.1007/BF01939382. [DOI] [PubMed] [Google Scholar]
  28. Lin C. H., Forscher P. Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol. 1993 Jun;121(6):1369–1383. doi: 10.1083/jcb.121.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lumsden A., Cohen J. Axon guidance in the vertebrate central nervous system. Curr Opin Genet Dev. 1991 Aug;1(2):230–235. doi: 10.1016/s0959-437x(05)80075-9. [DOI] [PubMed] [Google Scholar]
  30. Murray A. W. Creative blocks: cell-cycle checkpoints and feedback controls. Nature. 1992 Oct 15;359(6396):599–604. doi: 10.1038/359599a0. [DOI] [PubMed] [Google Scholar]
  31. Nixon R. A. Slow axonal transport. Curr Opin Cell Biol. 1992 Feb;4(1):8–14. doi: 10.1016/0955-0674(92)90052-e. [DOI] [PubMed] [Google Scholar]
  32. Okabe S., Hirokawa N. Actin dynamics in growth cones. J Neurosci. 1991 Jul;11(7):1918–1929. doi: 10.1523/JNEUROSCI.11-07-01918.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okabe S., Hirokawa N. Axonal transport. Curr Opin Cell Biol. 1989 Feb;1(1):91–97. doi: 10.1016/s0955-0674(89)80043-2. [DOI] [PubMed] [Google Scholar]
  34. Palka J., Whitlock K. E., Murray M. A. Guidepost cells. Curr Opin Neurobiol. 1992 Feb;2(1):48–54. doi: 10.1016/0959-4388(92)90161-d. [DOI] [PubMed] [Google Scholar]
  35. Schulze E., Asai D. J., Bulinski J. C., Kirschner M. Posttranslational modification and microtubule stability. J Cell Biol. 1987 Nov;105(5):2167–2177. doi: 10.1083/jcb.105.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  37. Shibuya E. K., Boulton T. G., Cobb M. H., Ruderman J. V. Activation of p42 MAP kinase and the release of oocytes from cell cycle arrest. EMBO J. 1992 Nov;11(11):3963–3975. doi: 10.1002/j.1460-2075.1992.tb05490.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Symons M. H., Mitchison T. J. Control of actin polymerization in live and permeabilized fibroblasts. J Cell Biol. 1991 Aug;114(3):503–513. doi: 10.1083/jcb.114.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tanaka E. M., Kirschner M. W. Microtubule behavior in the growth cones of living neurons during axon elongation. J Cell Biol. 1991 Oct;115(2):345–363. doi: 10.1083/jcb.115.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tessier-Lavigne M. Axon guidance by molecular gradients. Curr Opin Neurobiol. 1992 Feb;2(1):60–65. doi: 10.1016/0959-4388(92)90163-f. [DOI] [PubMed] [Google Scholar]
  41. Toso R. J., Jordan M. A., Farrell K. W., Matsumoto B., Wilson L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry. 1993 Feb 9;32(5):1285–1293. doi: 10.1021/bi00056a013. [DOI] [PubMed] [Google Scholar]
  42. Webster D. R., Gundersen G. G., Bulinski J. C., Borisy G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9040–9044. doi: 10.1073/pnas.84.24.9040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wessells N. K., Nuttall R. P. Normal branching, induced branching, and steering of cultured parasympathetic motor neurons. Exp Cell Res. 1978 Aug;115(1):111–122. doi: 10.1016/0014-4827(78)90408-1. [DOI] [PubMed] [Google Scholar]
  44. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zheng J., Buxbaum R. E., Heidemann S. R. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation. J Cell Sci. 1993 Apr;104(Pt 4):1239–1250. doi: 10.1242/jcs.104.4.1239. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES