Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Mar 1;128(5):913–918. doi: 10.1083/jcb.128.5.913

Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons

PMCID: PMC2120403  PMID: 7876314

Abstract

The goal of this study was to assess the relative importance of the axonal synthesis of phosphatidylcholine for neurite growth using rat sympathetic neurons maintained in compartmented culture dishes. In a double-labeling experiment [14C]choline was added to compartments that contained only distal axons and [3H]choline was added to compartments that contained cell bodies and proximal axons. The specific radioactivity of labeled choline was equalized in all compartments. The results show that approximately 50% of phosphatidylcholine in distal axons is locally synthesized by axons. The requirement of axonal phosphatidylcholine synthesis for neurite growth was investigated. The neurons were supplied with medium lacking choline, an essential substrate for phosphatidylcholine synthesis. In the cells grown in choline-deficient medium for 5 d, the incorporation of [3H]palmitate into phosphatidylcholine was reduced by 54% compared to that in cells cultured in choline-containing medium. When phosphatidylcholine synthesis was reduced in this manner in distal axons alone, growth of distal neurites was inhibited by approximately 50%. In contrast, when phosphatidylcholine synthesis was inhibited only in the compartment containing cell bodies with proximal axons, growth of distal neurites continued normally. These experiments imply that the synthesis of phosphatidylcholine in cell bodies is neither necessary nor sufficient for growth of distal neurites. Rather, the local synthesis of phosphatidylcholine in distal axons is required for normal growth.

Full Text

The Full Text of this article is available as a PDF (736.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol. 1982 Sep;93(1):1–12. doi: 10.1016/0012-1606(82)90232-9. [DOI] [PubMed] [Google Scholar]
  2. Campenot R. B., Draker D. D. Growth of sympathetic nerve fibers in culture does not require extracellular calcium. Neuron. 1989 Dec;3(6):733–743. doi: 10.1016/0896-6273(89)90242-0. [DOI] [PubMed] [Google Scholar]
  3. Campenot R. B., Walji A. H., Draker D. D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J Neurosci. 1991 Apr;11(4):1126–1139. doi: 10.1523/JNEUROSCI.11-04-01126.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  5. DeVries G. H., Chalifour R. J., Kanfer J. N. The presence of phospholipase D in rat central nervous system axolemma. J Neurochem. 1983 Apr;40(4):1189–1191. doi: 10.1111/j.1471-4159.1983.tb08114.x. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Futerman A. H., Khanin R., Segel L. A. Lipid diffusion in neurons. Nature. 1993 Mar 11;362(6416):119–119. doi: 10.1038/362119a0. [DOI] [PubMed] [Google Scholar]
  8. Gould R. M., Holshek J., Silverman W., Spivack W. D. Localization of phospholipid synthesis to Schwann cells and axons. J Neurochem. 1987 Apr;48(4):1121–1131. doi: 10.1111/j.1471-4159.1987.tb05636.x. [DOI] [PubMed] [Google Scholar]
  9. Gould R. M. Inositol lipid synthesis localized in axons unmyelinated fibers of peripheral nerve. Brain Res. 1976 Nov 19;117(1):168–174. doi: 10.1016/0006-8993(76)90569-2. [DOI] [PubMed] [Google Scholar]
  10. Gould R. M., Spivack W. D., Robertson D., Poznansky M. J. Phospholipid synthesis in the squid giant axon: enzymes of phosphatidylinositol metabolism. J Neurochem. 1983 May;40(5):1300–1306. doi: 10.1111/j.1471-4159.1983.tb13570.x. [DOI] [PubMed] [Google Scholar]
  11. Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
  12. Kumara-Siri M. H., Gould R. M. Enzymes of phospholipid synthesis: axonal versus Schwann cell distribution. Brain Res. 1980 Mar 31;186(2):315–330. doi: 10.1016/0006-8993(80)90978-6. [DOI] [PubMed] [Google Scholar]
  13. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  14. Millington W. R., Wurtman R. J. Choline administration elevates brain phosphorylcholine concentrations. J Neurochem. 1982 Jun;38(6):1748–1752. doi: 10.1111/j.1471-4159.1982.tb06658.x. [DOI] [PubMed] [Google Scholar]
  15. Padilla S., Pope C. N. Retrograde axonal transport of locally synthesized phosphoinositides in the rat sciatic nerve. J Neurochem. 1991 Aug;57(2):415–422. doi: 10.1111/j.1471-4159.1991.tb03768.x. [DOI] [PubMed] [Google Scholar]
  16. Pfenninger K. H., Johnson M. P. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J Cell Biol. 1983 Oct;97(4):1038–1042. doi: 10.1083/jcb.97.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Popov S., Brown A., Poo M. M. Forward plasma membrane flow in growing nerve processes. Science. 1993 Jan 8;259(5092):244–246. doi: 10.1126/science.7678471. [DOI] [PubMed] [Google Scholar]
  18. Strosznajder J., Radominska-Pyrek A., Horrocks L. A. Choline and ethanolamine glycerophospholipid synthesis in isolated synaptosomes of rat brain. Biochim Biophys Acta. 1979 Jul 27;574(1):48–56. doi: 10.1016/0005-2760(79)90083-3. [DOI] [PubMed] [Google Scholar]
  19. Tanaka T., Yamaguchi H., Kishimoto Y., Gould R. M. Lipid metabolism in various regions of squid giant nerve fiber. Biochim Biophys Acta. 1987 Oct 31;922(1):85–94. doi: 10.1016/0005-2760(87)90248-7. [DOI] [PubMed] [Google Scholar]
  20. Torre E. R., Steward O. Demonstration of local protein synthesis within dendrites using a new cell culture system that permits the isolation of living axons and dendrites from their cell bodies. J Neurosci. 1992 Mar;12(3):762–772. doi: 10.1523/JNEUROSCI.12-03-00762.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vance D. E. Boehringer Mannheim Award lecture. Phosphatidylcholine metabolism: masochistic enzymology, metabolic regulation, and lipoprotein assembly. Biochem Cell Biol. 1990 Oct;68(10):1151–1165. doi: 10.1139/o90-172. [DOI] [PubMed] [Google Scholar]
  22. Vance J. E., Pan D., Campenot R. B., Bussière M., Vance D. E. Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem. 1994 Jan;62(1):329–337. doi: 10.1046/j.1471-4159.1994.62010329.x. [DOI] [PubMed] [Google Scholar]
  23. Vance J. E., Pan D., Vance D. E., Campenot R. B. Biosynthesis of membrane lipids in rat axons. J Cell Biol. 1991 Nov;115(4):1061–1068. doi: 10.1083/jcb.115.4.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yao Z. M., Jamil H., Vance D. E. Choline deficiency causes translocation of CTP:phosphocholine cytidylyltransferase from cytosol to endoplasmic reticulum in rat liver. J Biol Chem. 1990 Mar 15;265(8):4326–4331. [PubMed] [Google Scholar]
  25. Yao Z. M., Vance D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2998–3004. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES