Abstract
We recently characterized three FGF-binding proteins (FGF-BPs) which are soluble forms of the extracellular domains of the high affinity FGF receptors (Hanneken, A. M., W. Ying, N. Ling, and A. Baird. Proc. Natl. Acad. Sci. USA. 1994. 91:9170-9174). These proteins circulate in blood and have been proposed to modulate the biological activity of the FGF family of proteins. Immunohistochemical studies now demonstrate that these soluble, truncated FGF receptors are also present in the basement membranes of retinal vascular endothelial cells. These immunoreactive proteins can be detected with antibodies raised to the extracellular domain of FGFR-1 but not with antibodies raised to either the juxtamembrane domain or the cytoplasmic domain of FGFR-1. Western blotting of human retinal extracts with the antibody raised to the extracellular domain of FGFR-1 detects specific, low molecular mass proteins at 85 kD and 55 kD, corresponding in size to the FGF-BPs, which are not detected with antibodies against the cytoplasmic domain of the receptor. The interaction of this receptor with the extracellular matrix is not dependent on the presence of FGF-2. Immunoreactive receptors are still detected in vascular basement membranes after the removal of FGF-2 with heparitinase. In addition, the recombinant extracellular domain of FGFR-1 continues to bind to corneal endothelial cell matrix after endogenous FGF-2 has been removed with 2 M NaCl. Acid treatment, which has been shown to disrupt protein interactions with the extracellular matrix, leads to a significant reduction in the presence of the matrix form of the FGF receptor. This loss can be restored with exogenous incubations of the recombinant extracellular domain of FGFR-1. This report is the first demonstration that a truncated form of a high affinity growth factor receptor can be localized to the extracellular matrix. These findings add to the list of binding proteins associated with the extracellular matrix (IGFBP-5) and suggest a potentially new regulatory mechanism for controlling the biological availability of FGF, and other peptide growth factors, in the extracellular matrix.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bautista C. M., Baylink D. J., Mohan S. Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: a potential candidate for fixing IGF-II in human bone. Biochem Biophys Res Commun. 1991 Apr 30;176(2):756–763. doi: 10.1016/s0006-291x(05)80249-9. [DOI] [PubMed] [Google Scholar]
- Duan D. S., Werner S., Williams L. T. A naturally occurring secreted form of fibroblast growth factor (FGF) receptor 1 binds basic FGF in preference over acidic FGF. J Biol Chem. 1992 Aug 15;267(23):16076–16080. [PubMed] [Google Scholar]
- Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., Vlodavsky I. A heparin-binding angiogenic protein--basic fibroblast growth factor--is stored within basement membrane. Am J Pathol. 1988 Feb;130(2):393–400. [PMC free article] [PubMed] [Google Scholar]
- Fukunaga R., Seto Y., Mizushima S., Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8702–8706. doi: 10.1073/pnas.87.22.8702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez A. M., Buscaglia M., Ong M., Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol. 1990 Mar;110(3):753–765. doi: 10.1083/jcb.110.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin R. G., Friend D., Ziegler S. F., Jerzy R., Falk B. A., Gimpel S., Cosman D., Dower S. K., March C. J., Namen A. E. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell. 1990 Mar 23;60(6):941–951. doi: 10.1016/0092-8674(90)90342-c. [DOI] [PubMed] [Google Scholar]
- Hanneken A., Baird A. Immunolocalization of basic fibroblast growth factor: dependence on antibody type and tissue fixation. Exp Eye Res. 1992 Jun;54(6):1011–1014. doi: 10.1016/0014-4835(92)90166-p. [DOI] [PubMed] [Google Scholar]
- Hanneken A., Lutty G. A., McLeod D. S., Robey F., Harvey A. K., Hjelmeland L. M. Localization of basic fibroblast growth factor to the developing capillaries of the bovine retina. J Cell Physiol. 1989 Jan;138(1):115–120. doi: 10.1002/jcp.1041380116. [DOI] [PubMed] [Google Scholar]
- Hanneken A., Ying W., Ling N., Baird A. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9170–9174. doi: 10.1073/pnas.91.19.9170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanneken A., de Juan E., Jr, Lutty G. A., Fox G. M., Schiffer S., Hjelmeland L. M. Altered distribution of basic fibroblast growth factor in diabetic retinopathy. Arch Ophthalmol. 1991 Jul;109(7):1005–1011. doi: 10.1001/archopht.1991.01080070117048. [DOI] [PubMed] [Google Scholar]
- Heinegård D., Sommarin Y. Isolation and characterization of proteoglycans. Methods Enzymol. 1987;144:319–372. doi: 10.1016/0076-6879(87)44186-4. [DOI] [PubMed] [Google Scholar]
- Hou J. Z., Kan M. K., McKeehan K., McBride G., Adams P., McKeehan W. L. Fibroblast growth factor receptors from liver vary in three structural domains. Science. 1991 Feb 8;251(4994):665–668. doi: 10.1126/science.1846977. [DOI] [PubMed] [Google Scholar]
- Isacchi A., Bergonzoni L., Sarmientos P. Complete sequence of a human receptor for acidic and basic fibroblast growth factors. Nucleic Acids Res. 1990 Apr 11;18(7):1906–1906. doi: 10.1093/nar/18.7.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson D. E., Lee P. L., Lu J., Williams L. T. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol. 1990 Sep;10(9):4728–4736. doi: 10.1128/mcb.10.9.4728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. I., Gockerman A., Busby W. H., Jr, Camacho-Hubner C., Clemmons D. R. Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol. 1993 May;121(3):679–687. doi: 10.1083/jcb.121.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiefer M. C., Baird A., Nguyen T., George-Nascimento C., Mason O. B., Boley L. J., Valenzuela P., Barr P. J. Molecular cloning of a human basic fibroblast growth factor receptor cDNA and expression of a biologically active extracellular domain in a baculovirus system. Growth Factors. 1991;5(2):115–127. doi: 10.3109/08977199109000276. [DOI] [PubMed] [Google Scholar]
- Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 1987 Apr;131(1):123–130. doi: 10.1002/jcp.1041310118. [DOI] [PubMed] [Google Scholar]
- Ornitz D. M., Yayon A., Flanagan J. G., Svahn C. M., Levi E., Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol. 1992 Jan;12(1):240–247. doi: 10.1128/mcb.12.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raines M. A., Liu L., Quan S. G., Joe V., DiPersio J. F., Golde D. W. Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8203–8207. doi: 10.1073/pnas.88.18.8203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg L. C., Choi H. U., Tang L. H., Johnson T. L., Pal S., Webber C., Reiner A., Poole A. R. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem. 1985 May 25;260(10):6304–6313. [PubMed] [Google Scholar]
- Saksela O., Moscatelli D., Sommer A., Rifkin D. B. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol. 1988 Aug;107(2):743–751. doi: 10.1083/jcb.107.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommer A., Rifkin D. B. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol. 1989 Jan;138(1):215–220. doi: 10.1002/jcp.1041380129. [DOI] [PubMed] [Google Scholar]
- Takaki S., Tominaga A., Hitoshi Y., Mita S., Sonoda E., Yamaguchi N., Takatsu K. Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J. 1990 Dec;9(13):4367–4374. doi: 10.1002/j.1460-2075.1990.tb07886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voss B., Glössl J., Cully Z., Kresse H. Immunocytochemical investigation on the distribution of small chondroitin sulfate-dermatan sulfate proteoglycan in the human. J Histochem Cytochem. 1986 Aug;34(8):1013–1019. doi: 10.1177/34.8.2426331. [DOI] [PubMed] [Google Scholar]
- Walicke P. A., Feige J. J., Baird A. Characterization of the neuronal receptor for basic fibroblast growth factor and comparison to receptors on mesenchymal cells. J Biol Chem. 1989 Mar 5;264(7):4120–4126. [PubMed] [Google Scholar]
- Yamaguchi Y., Mann D. M., Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990 Jul 19;346(6281):281–284. doi: 10.1038/346281a0. [DOI] [PubMed] [Google Scholar]
- Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
- Zupan A. A., Osborne P. A., Smith C. E., Siegel N. R., Leimgruber R. M., Johnson E. M., Jr Identification, purification, and characterization of truncated forms of the human nerve growth factor receptor. J Biol Chem. 1989 Jul 15;264(20):11714–11720. [PubMed] [Google Scholar]